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We investigate the intrinsic geometry of timelike and null homothetic Killing trajectories. We do this
through the use of two different Frenet-Serret formalisms developed by Synge and Bonnor. The
curvature of such a nongeodesic timelike curve passing through a spacetime point is a direct measure of
the expansion of the congruence at that point. Moreover, the rotation of this congruence is directly
related to the torsions of its individual curves. For both classes of curves, timelike and null, the intrinsic
scalars can be expressed as exponential functions of suitable parameters. We prove the following theorem
twice, first by using the timelike formalism, and then through the null one. A homothetic stationary limit
surface (where the homothetic Killing vector becomes null) is a null geodesic hypersurface if and only if
the rotation of the homothetic Killing congruence vanishes on that hypersurface. The second, “nuil”
approach allows us to derive this theorem directly on the hypersurface. Finally, we note that by setting a

parameter equal to zero we recover all of the corresponding results for ordinary Killing vectors.

1. INTRODUCTION

The concept of a Killing horizon, a familiar idea in
black hole physics, was first developed when Carter!
and Vishveshwara’ independently considered asymptoti-
cally flat spacetimes admitting a time translational
Killing vector (KV). Their analysis led to the result
that a static limit surface (where the KV becomes null)
is a null geodesic hypersurface if and only if the rota-
tion of the Killing congruence vanishes on that hypersur-
face. The same result was later obtained in an entirely
different manner from the original approach.?® In
particular it was derived by first using a Frenet—
Serret formalism for timelike Killing curves, and then
taking a limit onto a static limit surface where this
formalism breaks down. This approach is valid because
each of the relevant terms involved in the theorem is
both independent of the formalism and well defined on
the hypersurface, However, it also suggests examining
the trajectories, through other means, directly on the
hypersurface.

If we assume that spacetime admits a homothetic
Killing vector (HKV), £° then the metric can be written
in the form g,, =¢“h, where ¢ is a constant, Tis a
parameter along the trajectory, and %,, is a function on
the spacetime with the restriction that it be constant
along any particular HK trajectory. 4 For a KV ¢ is zero.
It follows that an HK observer experiences a homothetic
change in g, as he moves along his trajectory. Further-
more, if the HK congruence is irrotational, he concludes
that the spacetime is “homothetically static”; otherwise
he concludes that the spacetime is “homothetically
stationary.” In regions where the HKV is not timelike,
such an observer cannot exist. We therefore term the
boundary, where the HKV becomes null, to be a
“homothetic stationary limit surface, ” It would seem
appropriate to distinguish between static and stationary
limit surfaces even for spacetimes having an ordinary
KV.
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More recently,® some of the earlier results for KV’s
have been extended to spacetimes admitting a timelike
conformal Killing vector (CKV). For example, the “con-
formal stationary limit surface” is introduced, and
shown to be an infinite frequency shift surface for CK
sources and observers, Moreover, the necessary and
sufficient conditions for this hypersurface to be null and
geodesic were given, having relevance to the existence
of horizons in such spacetimes.

In this paper we study the intrinsic geometry of both
timelike and null nongeodesic HK congruences. We do
this via two different Frenet—Serret formalisms devel-
oped by Synge® T and Bonnor. ® This allows us to (a)
consider the geometry of timelike HK trajectories that
are infinitesimally close to a homothetic stationary
limit surface and (b) consider the geometry of these
trajectories when they degenerate into null HK curves
on the hypersurface itself. Furthermore, we can readily
obtain the geometry of ordinary Killing trajectories from
these results. This includes the case of time-~transla-
tional Killing curves in Kerr spacetime, These are
nongeodesic and timelike outside the stationary limit
surface but nongeodesic and null on it.

2. TIMELIKE HOMOTHETIC KILLING TRAJECTORIES

Consider a spacetime that admits a homothetic
Killing vector £%, Such a vector satisfies’

Ltgabsva£b+vb£a:2(bgab’ (1)

where /, is the Lie derivative along £, ¢ is a constant
scalar defined by ¢ =1V £t% g, is the metric tensor,
and V, is its associated covariant derivative operator,
We adopt the convention that Latin indices range and
sum from 0 to 3, while Greek indices range and sum
from 1 to 3, and we choose a signature of —2, If ¢ =0,
then £° is an ordinary Killing vector corresponding to an
isometry of the spacetime. For the present we shall
assume that £° is timelike in which case we can define
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a 4-velocity along &°, viz,
u'=eTEl, £ = (2)

It is a straightforward task to show that such a congru-
ence is shear-free’ and has an expansion 9 =3V u°

=u’V b= e,

Since we are interested in studying the properties of
such a congruence via the intrinsic geometry of the
individual curves, we briefly review the Frenet—Serret
(F—S) formalism for timelike curves.®

Let x* =x%s) be an arbitrary timelike curve of class
C’ with arc length s. Associated with each point of this
curve is the F—8 tetrad comprising the unit tangent
vector u® =dx%/ds, and three mutually orthogonal, unit
spacelike vectors ey, 1 =1,2,3, each of which is
orthogonal to #°, These vectors obey the F—S equations,

2] o « o o) [ u] (3a)
é(T) Kk 0 7, 0O e(f) (3b)
= J
€q) 0 -7 0 7 feg (3c)
f a ) | L_0 0 -7 0~ & (‘3')_ (3d)
where " =4V, is the covariant total derivative operator
along the curve and u"u, =1, e%,, €,,,== 0,,, and

u%e,,,=0. The scalar coefficients, i.e., the curvature
x and the first and second torsions 7; and 7, form a
complete set of invariants of the curve in spacetime.
We choose the sign of k¥ and 7, as positive, The sign of
7y is then fixed by imposing a definite handedness, say
right-handedness, to the spacelike triad, which is
equivalent to assuming that spacetime is orientable.

We shall apply the above formalism to timelike HK con-
gruences, i.e., where #®=¢™t® and £° satisfies Eq. (1).

Suppose first that k =0 so that we are dealing with a
timelike geodesic. Now #°=0 implies that £% =ht®
where '=£%v, and h is a scalar coefficient. If we trans-
vect the above with £, and make use of the HK equation
(1), we find that 0=£%_(h - ¢). The latter by itself
implies that either £° is necessarily null or else h=¢
and £% is not necessarily null, At this point we are only
concerning ourselves with timelike trajectories, and
so we must have 7 = ¢ whenever ¥ =0. An example of
this comes from Minkowski spacetime which admits the
HK vector £%°=(t, x, v, z). Here 1 =¢ =1 while £° only
becomes null on the light cone.

Suppose now that x#0, i.e., we are dealing with non-
geodesic HK trajectories. Then we find it useful to use
the HK equation (1) to express the acceleration vector
as

U =F%y,, where Fu=e(¢gy ~Vaks]=— Vi Ep.
4)

Thus F? is a second rank antisymmetric tensor. The
first of the F~S equations (3a) together with Eq. (4)
yields ke §,=F®u,. We take the total derivative of this
with respect to the arc length s and make use of Eq.
(3a) again so that

> a ‘ a __ rab ab
ke g, t ke, =F%u, + kF%e . (5)
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At this point we must evaluate F°:
Fo® — _ {F 4 e ey b gal, 6)

The last term can be shown to vanish by making use of
an identity that is valid for both HKV’s as well as
ordinary KV’s, namely,

chbga :Rdcbagd. (7)

(The corresponding identity for CKV’s is slightly more
complicated.® The manner of derivation is the same for
KV’s, HKV’s, and CKV’s.) It follows that o —— yF
from which ¢¥F* is constant along the trajectory.
Equation (5), with the help of Eq. {4), then reduces to

ke §,tred ==yred +KkE®e (. (8)
If we transvect Eq. (8) with e;,,, we find that
—k=1k and &§,=F%,, (9)

where we have made use of the fact that F® is antisym-
metric and e §, e 4,,=—1 implies that e §, e ,, =0. Now
8=1=e"¢ together with ¢ = const leads to §=—- 6% so
that (x/0)" = 0. Again, the second F—S equation {3b)
together with Eq. (9) yields

a a __ b
ku®+ e 8 =FPe . (10)

If we differentiate Eq. (10) and continue the previous
process, we eventually arrive at

;(/K:T'l/'rl:‘f‘z/'rz::—(ﬁz—& [9:—92, (11)
or equivalently
(£/8) =(1,/8) = (15/6) =0. (12)

Thus «/8, 7,/6, and T,/8 are constants of the motion.
Moreover,

.e(ﬂ):Fabe(u)b; n=1,2,3, (13)

There are two solutions to 6 =~ 62, namely 6 =0, and
6=(s—a)!, where a is a constant, in which case e*
=¢(s —a). It is clear that in the second instance these
timelike trajectories must always have either s> a or
s < a since ¢*=0 corresponds to a null HK vector. On
the other hand, the solution 8 =0 corresponds to ordi~
nary Killing trajectories, i.e., ¢ =0. Equation (11) then
reduces to a previously derived result,3 namely that

K, Ty, and Ty are constants, Since an HK congruence has
8+0, we see from the above that the curvature of the
individual trajectories is a direct measure of the con-
gruence’s expansion. We note, however, that an HK
congruence can be comprised of geodesics. Our pre-
vious example from Minkowski space illustrates this
point. For £%=yx® with 2%, > 0 we have that 6 =1/Vxx,
> 0 while k=0,

it follows directly from Eq. (11) and {e*)’ = ¢ =const
that

K _T_m_e® 1 (14)

Ko 1o

where the point s =0 and the subscript “0” correspond
to an arbitrary reference point on the trajectory. Thus
all three scalars decrease monotonically as s increases
for ¢ =€*"8,> 0. It should be noted that 1 + 6ys =0 only if
¢*=0. In this instance k, 7;, and 7, are not defined.
This is due to the fact that the F—S formalism that we
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have been using until now is specifically geared to time-
like curves whereas when ¢®=0 the curves are null and
u° is not defined. (We shall deal with the null case later
in this paper), We also note that if the curvature
vanishes at some point, say x,=0, then k=0 every-
where and the curve is a timelike geodesic. (The F—§
process is essentially a Gram—Schmidt orthogonaliza-
tion process along the curve, and it stops when one of
the invariants is zero. The rest are usually set equal to
zero).

We gain further insight into the significance of the
F—S8 scalars and vectors by operating on »® with both
sides of the bivector identity'’

=(F*)%, = a(FY), - g46%,. (15)
Here o =— ;F®F;, f=~ tF9F 4, Foy=3NuF* is the
dual of F with 74, the alternating tensor, and (F")%,
=F%F*...F' F% being repeated n times. By re-
peatedly making use of Eqs. (4), (13), and (3) we arrive
at

0=[K*' (K} - T} = a) = Bl +kr [k} = I = 7}) = aled,.
(16)
This requires that

2

o=kt -7} and gP=k'7{. an

We choose the negative square root, i.e,,
,B ==KTy (18)

to conform with an earlier choice for Killing
congruences, !

Now we examine the rotation vector w® of the con-
gruence, i.e,,

abedy T g (19)

w® =5y
and its associated renormalized vector w*
P oEqe (20)

It follows directly that w® =%t
can write these as

a)‘a — lna

In view of Eq. (4) we

aa:_ gszabu _(,wa (21)

where F% is the dual of F®,

0:(F3)ab_(YFab_3FA*ub (22)
it follows that
Bw? = e [a Foy, - (F3)%y, ], (23)

Again the combined use of Egs. (4),
simplifies this expression to read!?

ot Tie(S)] (24)

Equations (24) and (17) then yield

(13), (3), ana (18)

O_Ja: e?u[Tze

w u) = - (’4w[71 + Ty ] 4111[0, 2]. (25)
Furthermore, Eqs. (4) and (1) lead to
e (29! - 3VEIV £,). - (26)

In order to gain further insight into some of the above
results, we consider £°t =const hypersurfaces. The
normal to such a hypersurface is given by

=3V, {(£°,) = £"V,4,. 27)

@ =~ 3F9F =
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From the bivector identity'?

With the help of Eqs. (1) and (3a) we can write this as
wny = et o? — ], (28)

Finally we combine Eqs. (25), (26), and (28) and find
that

Ww, — n'n, = (£°8,) [#*

n,=e*[pu, - e*ke g,,],

- 3VOEIY £y (29)

This is a generalization of a well-known theorem for
Killing congruences alluded to in the Introduction. It
states that a £°t, =0 hypersurface, i,e., a homothetic
stationary limit surface is a null hypersurface if and
only if the rotation vector w* vanishes or is null on
that hypersurface., When ¢ =0, we have an ordinary
Killing congruence, and Eq. (29) reduces to a well-
known equation, *»% In fact, Eq. (23) is not limited to
HK congruences. It is also valid for conformal Killing
congruences where ¢ =1V ,£° is a function of spacetime
position. This and the full implicatioas of this equation
are discussed in greater detail elsewhere.® We note at
this point that while Eq. (29) was derived here via a
formalism that is valid only for timelike curves, each
of its terms as defined through Egs. (20), (27), and (1)
is well defined when £° becomes null, Hence Eq. (29)
is valid on a homothetic stationary limit surface. We
shall derive this equation directly on such a hypersur-
face in the following section when we consider non-
geodesic null HK congruences.

3. NULL HOMOTEHETIC KILLING TRAJECTORIES

The geometry of nongeodesic null curves in space-
time was first considered by Bonunor. 8 Though his study
was restricted to real null curves in Minkowski space,
he noted that many of his results could be generalized
to curved Riemannian spacetimes., He encountered an
interesting problem in his study of these curves, namely
the absence of a simple parameter corresponding to the
proper time of a timelike line, or the affine parameter
of a null geodesic. He overcame this difficulty by
introducing a pseudo-arc that is defined invariantly with
respect to parameter transformations. Synge, in a
later study, sidestepped and simplified this problem by
restricting himself to dynamical nongeodesic null lines
corresponding to a massless particle with a given 4-
momentum p° tangent to the curve, While the physical
reality of such a hypothetical particle is not clear, his
assumption does ensure the existence of a unique
special parameter A such that p®=dx?/dX. Now we shall
concern ourselves with nongeodesic null HK trajectories,
i.e., curves whose null tangent vector £° satisfies the
HK equation (1). It follows that there exists a unique
special parameter A such that £*=dx?/dX. Since our
approach is analogous to Synge’s, we shall proceed
along his mathematical lines and use the Frenet—Serret
equations that he develops.

Let x*=x%) be a nongeodesic null curve with a given
tangent vector t°® such that £ =dx®/dx. Following
Synge, 13 we can construct a null Frenet—Serret tetrad
along the trajectory comprising two null vectors, the
first of which is £, and two mutually orthogonal unit
spacelike vectors, each of which is orthogonal to the
null vectors. These vectors satisfy the null F—S8 equa-
tions,
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(&7 [0 w, 0 07 [t (30a)

a® K, 0 w1, 0] ]a® (30b)
= b

n® 0 kg 0 3] | w° (30c)

| 5] ks 0 0 0] LCJ (304)

where "= £°V and £%9),=1=- a°q,= - b, all other
inner products between the vectors being zero. The
scalar coefficients or curvatures are given by

Ky, Ky =3P (R +K), ky= k00, (31)

where
e={(- eV K=£"¢! and & =0 glel e

Since £% is an HK vector here, we can use Eq. (1) to
write

EC’:AME_d+¢§C, A==Vt (32)

Obviously 4“ is a bivector. Furthermore, by making
use of Eq. (7) we find that

A% =, (23)

The procedure now is similar to that used for the time-
like curves. From Egs. (30a) and (32) we have that

K1a® =A%t + 0E°, By differentiating this and using equa-
tion (30a), it follows that

Kia® + k0% = 1, A%, + 1y ha, (34)

We transvect Eq. (34) with a,. Since a°a,=—-1 and A*
is antisymmetric, we have that

ki=«yd and a® =A%, (35)

Equation {35) together with Eq. {30b) yield ,£°+ #1°
=A%,. Again we repeat the above procedure and find
that

Ki =KD, K== Kyd, Ki== Ky (36a)

or

o2

Ky =Kige®t,  Ky=Kyge™®h,  Ky=Kgee ™, (36b)
where the subscript “0” refers to the reference point
A=0, Furthermore,

Ecr :Acd§d+ cb£C, acr :Ami(ld, (37)

nc/ :Acd,nd - ¢>’fl°, bc’ :Ambd.

We note the sign difference between «; on the one hand
and K, and «; on the other. In reference to this, it is
interesting to take note of the following point made by
Bonnor, ® Unlike timelike curves that generally have
three intrinsic scalars, nongeodesic null curves have
only two curvatures, %, and k3, that are arbitrary func-
tions of the pseudo-arc (a particular parameter used by
Bonnor). In flat spacetime he introduces a third
curvature, k;, which has only two values, 0 or 1. The
former corresponds to a straight line and the latter is
introduced into his formalism to take account of a
peculiar nonstraight curve, the null cubic, which has
iy =k3 =0. We should not find it surprising, therefore,
that we can distinguish between a nonessential curvature
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ky and the essential curvatures x, and «;. In fact with
a suitable reparametrization we can also set k;=1.
When ¢ =0, we have nongeodesic null Killing trajec-
tories for which k;, k3, and k; are constants of the
motion, In flat spacetime these correspond to the null
helices considered by Bonnor,

We obtain further relations by operating on £ with the
bievector identity (A%)%, — o'(A%)?, ~ B?8%, =0 where o
=—A%A  and B= - 4A%A . By repeatedly applying
Egs. {36) and (37), we arrive at

0=[x32id + &) + 3r Ky p* ~ Ouyry — o PP + pf - BE]ES

— 263Ky 0 + 1, 0% = k00 |a® + [263ky + 1 p? — kG In®,
(38)

Transvecting Eq. (38) with either a, or £, leads to
0=21Ky + d° = @ (39)

Again, transvecting Eq. (38) with 7, and making use of
Eq. (39) leads to

Kk =Pt (40)
From Fgs. (32) and (1) o reduces to
o =2¢" - 391V 4, (41)

{which is a renormalization of o; see Eq. (26)] from
which

2iciKky = % — 3T °EIV £, 42)

From Eg. (36b) it follows that x,x, and &k, are both
constants and since ¢ is constant we have that V”E"chd
and V°£(V_£,) are constant along each trajectory.

Now we consider the rotation vector of this null con-
gruence, i.e., w%=m®UL vV i,. With the help of Eq.
{32) we can write this as

Wf=— A%y, (43)

where A° is the dual of Afd. Furthermore, the bivector
identity!® {(A%)% _ 7 A% _ BA% = 0 together with Eq. (43)
yields

But=0Aa%g, — (A%, (44)
Equations (36), (37), and (39) reduce this to fw®

= kix3b°. The norm of both sides of this equation
together with Eq. (40) finally gives us

Wl =ryh®, W, =— ik, (45)
where we have chosen the positive square root for w°,

We can now apply the foregoing to a homothetic
stationary limit hypersurface defined by £°¢,=0. From
Eq. (1) we see directly that the normal n,=£%V £, is
orthogonal to £°, i,e., £%,.=0, It follows that £° lies in
this hypersurface. We also note that £° cannot be tan-
gent to a null geodesic unless the hypersurface is also
a mull surface. For if we assume that £° is tangent to a
null geodesic, then we can write £ =h£° where 7 is a
scalar function. Now the normal to the hypersurface n,
can be expressed, with the help of Eq. (1), as

. =2k - £, (46)
and in this case this reduces to n,={(2¢ - k)£, or n'n,

=(2¢ - h)*£°, =0, Thus the homothetic stationary limit
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surface is either a null hypersurface or else 2¢ =h in
which case its normal is the zero vector! As an
example, we can consider the stationary limit surface
corresponding to the time-translational Killing vector
(¢ =0) of Kerr spacetime. There nn,#0 though £°¢, =0
and so these Killing trajectories are nongeodesic and
null,

Finally, Eqs. (46) and (30a) yield

n,=2pk,— Kya,, nn,=- ki, @mn

We observe that Eqs. (45) and {(47) can be combined as

0B, - nny =0, (48)
This last result is simply Eq. (29) evaluated on the
stationary limit surface. While our earlier derivation
was based on a timelike formalism, our approach here
made use of a null ¥—8 process on the hypersurface
itself. In any case, we see that if w°w,#0 on the hyper-
surface, then it is not a null surface which in turn
implies that it cannot be a horizon.
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The existence of the energy-shell limit of the “post” and *‘prior” forms of the half-off-shell T matrix is
considered for N-particle scattering involving at most one charged fragment in the incoming channel. An
approximate expression for the T matrix corresponding to the ionization of an uncharged fragment,
consisting of two charged particles, by a charged particle is proposed.

1. INTRODUCTION

When there is more than one charged fragment in
both the incoming and outgoing channels the usual ex-
pression for the half-off-shell T matrix must be
“renormalized” before the on-energy-shell limit is per-
formed, ! These difficulties associated with the defini-
tion of the physical T matrix can be circumvented for
scattering processes involving at most one charged
fragment in either the incoming or outgoing channels.
The particular case of scattering with at most one
charged fragment in the incoming channel and more
than one charged fragment in the outgoing channel is
considered in Sec. III of this paper, The existence of
the energy-shell limit of the “prior” form? of the half-
off-shell 7 matrix is shown and a discussion of the
breakdown of the “post” form of the half-off-shell T
matrix is given,

In Sec., V of this paper we consider the problem of
constructing the three particle ionization T matrix
corresponding to an incoming channel with one charged
fragment and an outgoing channel with three charged
particles, In order to construct the ionization 7 matrix
the three particle wavefunction corresponding to the
free channel is required, In Sec, IV approximate three
particle wavefunctions corresponding to the free chan-
nel are proposed, The justification of this approxima-
tion is based on the time-dependent theory for Coulomb
scattering and is independent of the existence of integral
equations for the physical wavefunctions,

The approximate wavefunctions proposed in Sec, IV
are applied in Sec, V to obtain an approximate expres-
sion for the ionization 7 matrix. A discussion of the
relationship of this approximation to the usual Born
approximation for the ionization T matrix®>? is given,

Il. PRELIMINARIES

In this paper we assume the scattering system con-
sists of V distinguishable spinless particles interacting
via two-body Coulomb-like potentials, We assume the
Hamiltonian A has the fox;m

ﬁozz(" 2u,)7'vi,

ﬁ:ﬁ +.V,
0 i?j/ ifs o)

@.1)
V(%) =e?VE(R) + V5(X), Vo®) =Z,7|x]",

where u; and Z;e are respectively the mass and charge

of particle 7 and V;jeL *(R%) + LP(R%), 2<p <3, 1=i<j<A.

The “modified” or “renormalized” wave operators for
N-particle Coulomb scattering are defined as follows, >*

Q= s-lim exp(iFl) exp[~iH, 1 - iG T (HOP M, (2.2)
o
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where I}, is the y-channel Hamiltonian, P ™ ig the pro-
jection onto /7, the ,-channel subspace, and G "(f)
=Y5¢p G0, where for 1<j ~k<n,

. M M,e e 2|t+e(t)lleki2
(r) — Ll TRTITR —_—
g () =e(t) 1P, ! 1°g<wﬂl,,(M,+ M,)

1, /-0,

€)= 2.3)

-1, /<0,

where M;, ¢;, and P; denote respectively the total mass,
total charge, and the center-of-mass momenta of the
jth fragment and By, = VP, - M;B,, 1<j <k <n,, where
n, denotes the number of fragments making up the
channel y, The existence of the renormalized wave
operators have been shown for a general class of Cou-
lomb-like potentials, * It is important to note that when
there is at most one charged fragment in the channel y
then G ?(/)=0 and the renormalized wave operators
reduce to the wave operators of short-range potential
scattering which we denote by W, ",

When deriving time-independent results it is con-
venient to separate off the total center-of-mass motion
of the N-particle system, We denote the Hamiltonian
corresponding to (2, 1) after the total center-of-mass
Kinetic energy operator has been separated off by
H=Hy+%¢;Vj. The explicit form of # depends on the
choice of “internal” position variables which will be
denoted collectively by x< R**1 The Hilbert space
H=L2(R*™ can be written as # = (2R #, H=[2(R¥¥1)
and the y-channel subspace takes the form j§’
= L3R5 HM Furthermore, ”=TaQ{ and W7
=T W, where Q" and W, act in A,

Hl. THE N-PARTICLE 7T MATRIX

The convergence of the prior form of the half-off-
shell 7 matrix to the on-energy-shell T matrix is
shown for scattering involving at most one charged frag-
ment in the incoming channel and more than one charged
fragment in the outgoing channel. We first give a short
account of the prior and post forms of the half-off-shell
T matrix for short-range potential scattering,

For short-range potential scattering the 7 operator
T, corresponding to an initial two fragment channel o
and final channel 3 is defined in terms of the wave
operators, W', by T,z=— (27i) (5P ~ W, B*u_ (@),
Due to the orthogonality of the ranges of the wave
operators for different channels we can rewrite T,;
as follows

© 1979 American Institute of Physics 6



TaB: - (27Ti)-1 n/jﬂ)*(’m(m)_ w{-(a))

== (2md) T (W — W By, 3.1)
The wave operators have the following Riemann—
Stieltjes integral representations, "™°
- T e
W= “e.‘f{;‘/; T hETP (3.2)

Applying (3.2) and the intertwining properties® to the
first equality in (3. 1) leads to the “prior” form of the
T operator

s=~1im ~1 €
= emap T T — e+ .2
Taed) £~ ( 77) j:m (HB— K) +e

X W (H — \) d, Efla p{®Yy, (3.3)
where ¥ (H,). A similar argument applied to the
second equality in (3. 1) leads to the “post” form of the
T operator,

- €
Tpe= ¢ R(= 1) 1P‘Bim A\ Eb (H- A)W‘“’m .

3.4)

By a lengthy but straightforward argument one can re-
late the prior and post forms of the T operator to the
usual prior and post forms of the half-off-shell T
matrix, The derivation of this relationship is outlined
below for scattering involving Coulomb-like potentials
and will not be given in the short-range case,

We now consider a two fragment incoming channel «
consisting of at most one charged fragment and an out-
going channel § consisting of more than one charged
fragment, The 7 operator is given by T,
=(2mi)1Q B *xw® A similar argument as applied in
the short-range case shows that the prior form of the T
operator is valid [Eq. (3.11), Ref. 10 with E{® =1],
i,e,, T,z has the following stationary representation

= - €
Tagh =2 7) ‘j T WV MERP Y,

(3.5)

where yc)(H,) and V'®=H- H,, The post form of the
T operator is not valid since the renormalized wave
operators Q,'® do not have the stationary representa-
tions (3. 2), however a “renormalized” post form of the
T operator is valid [Eq. (3.10), Ref, 10 with Q!®

— V/-(&)"L

It is not difficult to show (see Sec, III, Ref. 1) that
(3. 5) can be written as follows,
_8-lim s-lim/_ _y-1 " €
Togh =27 Rew (- 7) f [T (3.6)

X QB *g V(O B P(®y,

where gz is any cutoff function which satisfies:

lgx(X) | <C for all XeR3 where C is a constant,

gV ¥ nymee L[R¥¥D) for each 0 <R <« where 7, and 7,
are the bound state wavefunctions making up the chan-
nel o and limp..g,(X) =1 for all xeR3,

In order to relate (3. 6) to the usual expression for
the prior form of the half-off-shell 7" matrix we assume
the g-channel wavefunction ¢ ®x, p,), where p, denotes

7 J. Math. Phys., Vol. 20, No. 1, January 1979

a set of relative momenta variables of the n; fragments,
satisfies

(.99 &) =L L. m. fdps0 P, bg) By (b @.7)

for ¥=1, 1178 &, H'® where £, is the bound state wave-
function of the /th fragment, 1 </ s#ng and ¥, is the
Fourier transform of ¥;. In addition we assume that
¢ B(x, p,) satisfies for almost all xc R¥ M1

L[de H)iB)(x, 1"5)17’1(”3) | < C, (3;, 8)

where C is a finite constant for each ¥y¢ 7 with 7 a dense
subset of S(R*"s 1), Under these assumptions we obtain
(see Sec., 2 VII, of Ref, 1) the following relationship
between (3, 6) and the prior form of the half-off-shell

T matrix

(] Tys®) = 11m 1im (= 77 fdbgtbady (P b (Pa)

(ol Tus ) | P2 ooy G.9)

where $= 78,6 H'®, ¥y F, dryme, &1€SR?), and

(o] Tus(R) |02) = Jdx s B, b g V) (), ,)
3.10)
with H,0"x, b,) = E M Mx, p,),

An application of the nuclear theorem'!!? yields the

existence of the physical on-energy-shell 7 matrix,
denoted (gl TogiPo)p M. pte), as a tempered distribution,
i.e,,

@l Toph? :jdpsdpa‘zi(Pg)¢A1(Pa)(Ps' Tue[pa)E(B)=E(0¢)
(8.11)

for yeS(R3 DY ¢, S(RY),

We conclude from (3, 9) and (3, 11) that for scattering
corresponding to an initial channel with at most one
charged fragment and final channel involving more than
one charged fragment the usual prior form of the half-
off-shell T matrix has a well defined energy-shell limit,
The post form of the half-off-shell 7 matrix must be
“renormalized” before the energy-shell limit is per-
formed (see Theorem 7,2, Ref, 1).

V. APPROXIMATE THREE PARTICLE
WAVEFUNCTIONS

In order to calculate the three particle ionization T
matrix via the prior form of the half-off-shell T matrix
the three particle wavefunction ¢_(x,p) [¢ P, p) with
B=0] is required, Letx={X,,x;,t, 1 <i<j<3, k#i,j,
where X, and X;; are defined in terms of the position
coordinates {y;, ¥i»¥a) Of the three particles as follows,

X,=Yi—Y:
Xy =¥ = (s + 1) ueys + 1,9,

Furthermore let ¢}/ (x,p), 1 <i <j <3 be defined in
terms of the coordinates x ={X;;, x,} and p={p,,, ps} by

d);:j(x,p) =¢ (xk’ plz)d)* (xij’ pij))

where ¢ (X, p,) denotes the two particle free wavefunc-
tion and ¢,(X;y, p;,) denote the two particle Coulomb
wavefunctions. In this section we propose that the three

k+i,7,
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particle wavefunctions ¢,(x,p) can be approximated as
follows,

6,0, 0) = (x,p) —Q[ dlx,p) - 01 (x,p)] LY
as e — 0 where ¢ (x,p) denotes the three particle free

wavefunction,

The approximate wavefunctions (4, 1) have the form
of the nonhomogeneous term appearing in the Faddeev
equations for the three particle wavefunctions, One
cannot however justify the approximation (4,1) via the
Faddeev equations since these equations are not valid
for the Coulomb wavefunctions ¢, (x,p).

The approximation (4, 1) can be obtained from a
formal “renormalized” perturbation expansion for the
three particle wavefunctions ¢,(x,»), This expansion
can be defined in an analogous fashion as in the two
particle case, 13 however a justification of this formal
perturbation expansion is lacking in the three particle
case,

The motivation given in this paper for the approxima-
tion (4.1) is based on the following result for the re-
normalized wave operators Q¥

s <d) le'ﬂ[nj,‘”- i +§,(H' Q;'f)]» =0

valid for ¢, ¥S,(R) where S, is a dense subset of # and
for1<i<j<3

gB<4 (4.2)

Qb =pIU% exp(iH; 1) expl— iHyt - iGyy(D)] {4.3)

with H;; = H, + V;,;. Assuming that the expansion (3,7) is
valid for 3=0 (with a similar expansion for Q") (4, 2)
can be rewritten as follows,

s fax () fdp(p) e plx,p) - S (x, )

+}<Dj[q>(x,p)— o4, p)t=0, B<4 4.4)

for each ¢, weSc(RG)o The result (4.4) is a precise state-
ment of the approximation (4, 1),

In order to verify (4.2) it is sufficient to show
;*.mo<¢> |e-8[§;°)- n+T - Ez;'f)].;>: 0, B<4 (4.5)

for ¢, yeS,(R% where S, denotes the set of Schwartz
functions f(x) whose Fourler transform f(p) vanishes in
a neighborhood of w;p;=pu,py, 17 <j=<3.

We now consider the operators &, = Q® -1 F 4 (M
- Q}), For each zpcS the operators @, @ and @ 1<i
<j <3 satisfy

@O ) p= ez};‘,}gj’*“ dt exp (i HY) [143 -d—zi;ti(—t)]
1
x exp(- iHyf - iGO (1) ¥,
@ - my=cif “arespiifi, 0 [vis- i%‘f(—t)]
x expl= iHyt - iGy, (D) ¥,

where G,,=¢%G,,, 1<i <j <3, Thus for S, we have

8 J. Math. Phys., Vol. 20, No. 1, January 1979

@2
= eﬂg;lif * wdz-<¢ | exp(iH?t)

x [Vij (t)] exp(- iH, o)

x[exp(- iGOAt)) - exp(- iG,, ()]

ey zf 1 | (expiit) — exp (i, 1))
0

)([Vi‘;—ﬂ;djzdﬂ]exp(— iﬁof—ici;(t)) Z,D)u (4° 6)

In order to verify (4. 5) we require the following
technical lemma,

Lemma: For each constant 0 <R <« and for each
$eS, there exist constants Dy, D, and Dy which are in-
dependent of e for |e| <R such that

@ D an[vs- 4 e it

x[exp(= iGO() = exp (- iGy, (NI < |e|*D;.

4.7)
(o) For 1 €{<j<3

[~ 2240 | expl- iyt - 16,0010
< Dy(L+{#[)®/ Mog (1 + |¢])]*, 4.8)
where p is a positive constant,
() For1<i<j<3
1| Vi exp(= i ,t) < Dy(L + [ £])7, (4.9)

where 1sk <l <3,k+i,jorl+i,jH,;=H,+e? e

Parts (a) and (b) of the above lemma can be verified by
a slight modification of Dollard’s proof of the existence
of the renormalized wave operators, ® Part (c) of the
above lemma is verified in the Appendix,

The above lemma together with (4, 6) yields
(6|0, 0|=Dlelt

for ¢, ¢re§c where D is a constant independent of |e|<R
which verifies (4, 5).

V. AN APPROXIMATE IONIZATION 7 MATRIX

The three particle ionization T matrix denoted by
(P | Ty Po) g (o 0 18 given by

O | Tyl po) g (15 @

=[x &6, PV D (1) bx, pe) | 5@ 5, (5.1)
where ¢_(x, p) denotes the three particle wavefunction
corresponding to the free channel. We must emphasize
that (5.1) is a formal expression for the ionization T
matrix which is rigorously defined in terms of the limits
R~ and e —~ + 0 of the prior form of the half-off-shell
T matrix as in (3. 9).

Applying the approximation (4, 1) for ¢_(x,p) we obtain
the following approximate expression for the ionization
T matrix,

John Zorbas 8



0] TR s g ={ fdx ¢ (x,5) VIOx)D DAx, py)

—szfdx[(i) (x’ p) - (t)-“(x’ /))] V(a)(x)d) (oz)(x’ pa)} I E(@)ag0)

(5. 2)

In order to compare (5, 2) with the usual Born approxi-
mation we assume the uncharged fragment of the chan-
nel « consists of particles 1 and 2 and the charged frag-
ment corresponds to particle 3, The usual Born ap-
proximation for the ionization 7" matrix (5,1) takes the
form®4

(/7] TB)f’a)Em),E(U)

:f(lxd)lz (o, PIVIEEYG @ (b)) | g ter g, (5. 3)

One difficulty with the Born approximation is the lack
of symmetry in the approximate final channel wavefunc-
tion, The approximation (5. 2) does not suffer this
problem since the approximate final channel wavefunc-
tion (4.1) does not distinguish between any of the three
particles in the final channel,

The approximation (5, 2) formally reduces to the Born
approximation when particle 3 has a high relative mo-
mentum with respect to particles 1 and 2, Thus for
scattering in which particle 3 has a much greater energy
than the outgoing particles 1 and 2 we expect the Born
approximation (5. 3) to be valid. When all three final
particles have high comparable energies we expect the
approximation (5, 2) to be valid,

APPENDIX

In order to verify (4.9) we assume i=k=1, j=2 and
t >0 (the various other cases can be verified by an
analogous argument) and rewrite Hy, and V5 in terms of

the coordinates X=(u1y; + 112¥2)/ (111 + 1g), Xp=¥9~ ¥,
and X; =y, as follows:

[712 =~ (2ﬂ)'1V:2:12 -[2@uy + ﬁlzﬂ-lvszn
- @uy ol + V)
:Hif*- H67
Hp==[2(uy + )i - (2u3)‘1V33,
and

IJ’ P
IETEVAVAE S TS i
(231
where

ke
1t g :

The right side of (4, 9) satisfies the following
inequality,

1V exp(- fﬁxz")w”s (V5 - Vel exp (= iHpHdll

+ [ Ve exp(— iH 4l (A1)

where V°=2,Z,(X—X,1"!, A slight modification of the
argument used to prove the existence of the renormal-
ized wave operators®® yields the following estimate for
the last term in (Al)

| Ve exp(— i Hypt)ull =1 V€ exp(= iBg) ] < C(1+ | #])7,
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where the constant C depends on z})aizg‘c(, Thus in order to
complete the proof of (4, 9) we must show

(VG - V) exp(- iHpt)ill < CrA+ 1), (A2)
where ('’ is a constant which depends on d,Lgc,

The right side of (A2) satisfies the following inequality,
1 (V ~ V) exp(= iHyp )il
2
= BZiZs <fdx dXyy dX Xpp |
I 108 k= %y 1 TIx = (1 )Ry = %5
| Lexpl i+ 1) = 1T} 8, 300, %)) 2,

(A3)
where
U (%, Xyp, X5) = [exp( BV, X1y, %),
The standard estimate
[expli (2u5)wE, (¢ + D)1 (exp{i[2 (1 + pa)1™

X VA + 1) = iH{pt ) (X, Xya, X5)

:<“—-u‘3_>3 /Zde 3 exP('ﬂLj— x3-y 3)2>
277 (1+ 1) 2(t +1)
s (expi12(uy + po) WA+ 1) = i Hipt ) (X, Xyp, V)
together with (A3) yields the following bound,
(V% — V) exp(~ iHyyh) i)
= Cy(1+ )P faxdRey | Xe [ [dys) (expli[2 (g + pg)]™
XVE(I+1) - ingl}Z)(x, X1, ¥3) | 172
< Cy(1 + 1)3/2[ Jax dx,, d%s| Xy, |
[ (expli{2(py + no) 1 VR( +1) - iHpyt} 0) (%, Xy, %5) 111/

where C; and C; are constants and ¢ (X, Xy, X;)
=(1+ 1% 12" (X, Xy, X,) with #> 2, Thus for ¢S, we have
(V3§ = V®) exp(~ B )il
= Co(1 + )33 l[12] [adx dRyy 4y [ Xyo |2
x |[exp (= iB{,1)d (X, Xq, X5) [ H /4, (A4)

Let X;, = (¥4, ¥,,%;), Theorem 5 of Ref, 14 with n=1
provides the following estimate,

Uy | x05)? | Texp(= B4 1(%, Xpz, %5) |7} /2
sg{fdxn [x; 12| Texp(= i Hiy) O] (X, Xyp, Xg) | 2} 1/2
o D] i 2 00, ) 1

+ [ fdxgy | [Flp (X, X4, %) [ 2] /2})

The inequality (A4) together with (A5) verifies (A2).
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An angle-dependent lower bound on the solution of the
elastic unitarity integral and a new uniqueness condition

resulting from it
I. A. Sakmar? ®)

International Centre for Theoretical Physics, Trieste, Italy
(Received 12 July 1978)

Through an iteration process we construct, from the angle-dependent upper bound to the unitarity
integral, an angle-dependent lower bound and use this result to derive a uniqueness condition on the

solution of the integral equation.

In a recent paper® we gave an angle-independent lower
bound on the phase [sina(z)] of the scattering amplitude
defined by the integral equation

. q a L f) | A
sma(z):ﬂf f '—D‘TZ—H——

()] oK) dx dv, (1)

xcosla(x)-a i7a

where |f(z)| is the modulus of the amplitude assumed to
be known at all angles from a knowledge of the differen-
tial cross section. o(K) is the step function and
K=1-x*~y*~ 224+ 2xyz. q is the center-of-mass wave-
number.

We define

fd Ifx)l xfm oK)

sinp(z i) i

dx dv. (2)
We call the supremum of sini(z) in the interval
-1=sz<+1 “sinp” and assume that sing < 1. Its infinum
will be called “sinv.” In the following discussion we
shall use the notation u(>7), which will mean the larger
of the values of u at x or y. Similarly ¥(<3}) will mean
the smaller of ¥(x) or ¥(v). We can now write

a 0 )
f f Lf(2)

8(K)

K172

sma

Xcos[u(>7) - ] dx dv = siny,(2), (3)

since [1(>}) - 0] majorizes [a(x) - a(y)], thus minimiz-
ing cos[a(x) — a(v)]. The domain of «(z) is between 0 and
7/2 (see the references given in Ref. 1). With ¥,(2)

< @(z) we repeat the processz:

el[f V)‘
=21 /875 _Tf—z)_‘_

Sll’lOl

Xcos[u(>§)— ¥, (< ;)]%%{E)dx dy

= siny,(z) = siny,(2). (4

Continuing the iteration, we improve on siny,(z) and call
the limit siny(z)

}y}} siny,(z) = siny(z). (5)

“Permanent address: University of Western Ontario, London,
Ontario, Canada.

P)Research partially supported by the National Research Coun-
cil of Canada.
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Thus we have
sina(z) = siny(z). (6)

Unlike Ref. 1 where the value of the angle-independent
lower bound siné,,, could be expressed in terms of the
supremum sinpg and infinum sinv of the integral (2),
siny(z) can only be found if 1f(2)}! is explicitly known.
The integrals of type (3) and (4) must be evaluated
numerically.

In Ref. 1 we have used the angle-independent lower
bound siné,,, of sina(z) to extend the uniqueness domain
for the solutions of the unitarity integral. This domain
could be expressed in terms of the value of v for a given
u. Similarly the angle-dependent lower bound siny(z) of
sina(z) will be used to improve the uniqueness domain.
The basic relation here is?

Imf(z) - Img(z)
S Imf(x) - Img(x)]

277
o [T/ () + Ime(y) _ Imy(x) + Img(x)
Ref(v) +Reg(y) Ref(x)+ Reg(x)]
X[Ref(y) + Reg(n)] &) dx av, ™

where f(z) and g(z) are assumed to be two different
solutions of the unitarity equation with equal moduli but
different phases.

This relation can be written as
'Imf(z) — Img(z)|
<max lImf—Img?%f:llf . ltanp(y) - tany(0)]

oK)
Kl /2
In the case of the angle-independent bounds, we were
able to take the bracket with the tan terms outside the
integral and the integrals of the real parts of the ampli-
tudes gave us real parts of the s waves, which were
bounded by . Here we can no longer do this because of
the angle-dependent factor multiplying the real parts of
the amplitudes. We therefore majorize the expression
as follows:

IImf(z) — Img(2)|

x[Refly) + Reg(v)] dx dv, (8)

<max | Imf - Img| ([ [ j: [tanp(y) - tany(x)]
d (K)
x2 d—%( ) Kz dx dy. (9)
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The uniqueness condition becomes

N5 K
gg ; _i [tanp(v) - tany(x)] 2 f(v)] I—% dx dv<1,

(10)

where we could equally well write | g(v)} since if(v)i =
lg(yv)!. Everything in this expression is known in terms
of the given modulus of the amplitude. Since the values
of the modulus at all points are used to find both u(y)
and y(x) and also to evaluate the integral (unlike in our
previous uniqueness condition where only the supremum
and infinum values were used), this uniqueness condi-
tion cannot be directly compared with our previous
result without a knowledge of |f(z)i. This is because of
the different ways the integrands were majorized.
Whereas the modulus is a bad majorization for the real
part, the angle-dependent upper and lower bounds are
definite improvements over the supremum and infinum.
Another uniqueness condition which follows from Eq. (8)
is

12 J. Math. Phys., Vol. 20, No. 1, January 1979

tanyu — tany,, <1,

This has the same form as Eq. (22) of Ref. 1, but
Opmin Which is obtained in terms of v and vi, is re-
placed by v, which is likely to be a better lower bound.
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Topological solitons and graded Lie algebras
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This paper is an extension of our previous investigation on the crossing of defects in ordered media. We
provide a general mathematical framework, in which the obstructions for crossing p-dimensional defects
with g-dimensional defects in a (p + g + 1)-dimensional sample are the brackets of a certain graded Lie
algebra (connected with homotopy theory). This “confinement mechanism” brings together the
mathematical structures of two not yet related themes in present-day physics: solitons and supersymmetry.

INTRODUCTION

In a previous paper we have used topological concepts
and methods applied to problems in solid state physics.®
Our study belonged to the framework of the physical
theories which classify stable defects in ordered media
in terms of homotopy groups of a “manifold of internal
states” V (characteristic for the type of order under
consideration). See Refs. 1—4 and also Ref, 5.

In Ref. 1 we showed that noncommutation relations in
7,V have as effect a sort of “entanglement”: Defect lines
in three-dimensional samples of the ordered medium
cannot cross each other. In the present paper we show
that a similar “confinement mechanism” works in
higher dimensions. More exactly, the obstructions for
crossing “defect hypersurfaces” of dimension p and ¢
in a (p +¢ +1)-dimensional sample are the brackets in a
certain graded Lie algebra connected to the homotopy
groups of V. These brackets are the well-known
Whitehead products

VX0 V5TV
from homotopy theory. These brackets are exactly the
commutators if p =¢ =1; one can always think of them
as commutators in an enveloping algebra. In the crucial
four-dimensional case the vanishing of our brackets

just means that the action of 7,V on 7,V is trivial.

So, anyway, here is a “confinement mechanism”
which again, as in the three-dimensional case of biaxial
nematics! depends on some noncommutativity relation.
Strangely too, this brings together two, until now,
unrelated themes of modern physics: solitons (i.e.,
homotopy) and supersymmetry (i.e., graded Lie
algebras).

1. REVIEW OF WHITEHEAD PRODUCTS

In this section we will recall {without proofs) what-
ever is necessary to know about Whitehead products,
in homotopy theory, for the rest of the paper. For more
details we refer to Refs. 6 and 7. We believe that
Whitehead products should become a familar notion to
physicists interested in supersymmetry and (topological)
solitons.

Let (X,x,) be an arcwise connected space with base
point x,. For p,q>1 we define maps
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77,(X, xo) XTrq(X;xo) - 7Tgnq-l()(yxo)

which with w €7, Be7, associate their “Whitehead

product” [a, B]€ 7,,,.,, as follows.

We start by considering the unit cubes in the Euclidean
spaces R?, R¢,

PR ={(t),...,t)}, BFcR ={(u,...,u)}

17

The unit p-cube with the boundary crushed to a point,
I#/81, is the sphere S? (endowed with a base point *,=
the image of 8/”, and with an orientation coming from
the “standard” orientation of k?). [Remark: So, we have
a natural projection I* < /31 =8* and, if t< I* we will
think of { as being a (singular) “coordinate system” on
S? and write ¢ instead of 7,(¢). ] Inside of $*XS? we con-
sider SV Sv= (the S?-factor xthe base point of 57) U (the
base point of S?Xthe S¥-factor) c S#xSe,

Let 9(I*x[F)=aI* X[ U X 3[* (with the two copies of
3PP X3 coming from P x[, *x3F identified), endowed
with the base point (0,0), and

wy,ot [2U X1, (0,0)] = [$*V S, (x,, *,)]

defined as follows:

{t,*) iftelP, ucaP,
wmq(i,a):
(*p,u) if teorr, uck,
Note that one gets $#xS8? by gluing /*x ¢ to SV S? along
Wy,
Let f: (8%,%,) = (X,x,), g: (§¢,* )= (X,x,) be contin-
uous maps which represent the elements
acm,(X,x), pem (Xx,).

We orient P, FF canonically, *XF receives the
product orientation, and $**¢"! = 3(I* x F) will be oriented
accordingly.

The map

SPel (P X ) = SPVSe ~X
F2Y ] Ve

respects the base points, Its (based) homotopy class
depends only on «, £ and is, by definition,

[a, Ble ”r,-x(X’xo)v

Remark: A very useful description of the free
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homotopy class [«,§] is the following: Consider oriented
copies of S?, S and orient S?XS? accordingly. Consider
N#4—3 gmooth regular neighborhood of $#V§¢C §#x 89,
with the induced orientation, and some retraction
N#*e LGPV Qe Orient §#'¢°! = gN?* like — N*'¢, The (free)
homaotopy class of
aNtre Lo sov 5%

is [, 5] (considered as a free homotopy class),

Here is a list of some elementary properties of the

Whitehead product; as usual, the composition law of 7
is written multiplicatively if i=1 and additively if > 1.

(1) Let e = m,(X,x,), Ben,(X,x,). Then
la,Bl=apa™p™ e (X,x,).

So in dimension one, the Whitehead product is just the
commutator, This fits beautifully with the next proper-
ties which show that the Whitehead product is always
a sort of a commutator product.

(2) Letp, g, r>1 and

AET,, pem, yven,.
Then
[a,5]= (=18, a] (anticommutativity),

and

(— 1)"[(17 [B,V]] + (- 1)”[65 ['V, (Y]] + (“ 1)”[-)/, [a: B]] = 0'

The last formula is the “graded form* of the Jacobi
identity, Moreover, if p, ¢ > 1, [a, 8] depends bilinearly
on a and 8.

In other words, if we consider the graded Abelian
group

w**l(X’XO):EM ’
=1

where M,=7,,,(X,x,), together with the Whitehead
product

()
MM, =M.

we obtain a graded Lie algebra. (See Ref. 8 for the
general properties of graded Lie algebras and their
relations to physics. The graded algebras under con-
sideration here are Z algebras).

Comment: Let X be the “loop space” of X (based at
x,). X has a natural product which makes it an
(associative) H space, and 7,(X) =7,.,(2X) (see for
instance Ref, 7).

Even better, in the semisimplicial context, QX is
interpreted as a semisimplicial group (see for instance
Ref. 9). Anyway, there is a continuous, “grouplike,”
composition law

QX XQX — QX
and the induced map

71 (X) X7, (QX) = 7, ,(2X)

Toeq-2
is our Whitehead product.

Roughly speaking 7,,,(X) is for this very large
grouplike cbject what a standard Lie algebra is for a
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usual Lie group. Somehow, the idea is that graded Lie
algebras are the infinitesimal (super)symmetries coming
from really “very large groups.”

The fundamental group of X is the group of connected
components of X [7,X =7,{{2X)]. Remember also that
@, acts naturally on 7,. For p=1 this is just the natural
action by inner automorphism. If p > 1, 7, has a natural
7, module structure. [This means that for o« 7,(X,x,),
pem,(X,x,) an element a. B¢ 7,(X,x,) is defined; the
operation 7, 2: 7, is an automorphism and o’. (x.8)
=(a’. @). . One should think of this operation as the
natural generalization of the operation of 7, on itself by
inner automorphism. Again see Ref. 7, or any standard
text for details. ]

I aemX,x,), pe ﬂP(X’XO) (p>1),
then
[8,al=8-a.8, and [o,B]=(-1)*(8 - a. p),

(4) 1f [a, 8] =0, the same is true if one changes the
order of factors or their orientations.

(5) If ¢: (X,x,)—~(Y,y,) is a continuous map and
acw,(X,x,), Ben,(X,x,), then

qb*[a ,B]:[qb*a, (I)*b] < ﬂp+q-1(Y’y0)‘

(6) Let f,g represent o, 3. Then [, 8]=0 if and only
if fVg: S#VS? — X extends to a continuous map S?xS¢
_oX.

Remark: If X is an H space, i.e., if it is endowed with
a continuous multiplication for which the base point is a
homotopy identity), then all the Whitehead products
vanish., The converse is also true in the case of spheres:
actually the only spheres which are H spaces are s°, st
5%, and §7 (see Ref. 10).

2. AMODEL FOR HIGH-DIMENSIONAL ORDERED
MEDIA; STATEMENT OF THE MAIN RESULT

We give now a topological model for a “high-dimen-
sional ordered medium.” This is a direct generalization
of our three-dimensional model given in Ref. 1, and the
reader who would feel a need for an exposition of the
concepts at a more elementary level with examples
and drawings is advised to consult that reference.

The model consists of the following data:

(1) A topological space V, called the “manifold of
internal slates.” For simplicity’s sake, we will assume
V to be connected. For instance, in a three-dimensional
isotropic ferromagnet, this manifold V is the two-
dimensional sphere, corresponding to all possible
orientations of the magnetic moment, characterizing the
internal magnetic state.

(2) An n-dimensional smooth manifold #”, called the
“physical space.” The physical space is the space of the
medium: For material samples, generally n=3. Again,
for simplicity, M" is supposed connnected and without
boundary. M" and V will be fixed, once and for all.

(3) Our “ordered medium” will be a pair (2,2) where
¥ is a subset of M™® and

M~V
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is a continuous map, assigning to every pc M"-Z an
“ordev pavameter” &(p) € V. For instance, in a three-
dimensional isotropic ferromagnet, the order parameter
is the magnetic moment and ¥ is the locus of points in
the medium where the orientation of the magnetic
moment is not well defined (locus of singularities of

the order parameter). The subset T, which is the

“sel of defects,” will be assumed to be a compact
submanifold with boundary, of dimension n. Generically,
T will be supposed to possess a spine I' (which means

a polyhedron contained in the interior of ¥ such that =’
is obtained by thickening I" to a smooth submanifold of
codimension 0 of M") of dimension <k, where k =[n

- {the lowest i such that 7,V #0) - 1]. From a physical
standpoint this is a very natural assumption (see Refs.
1,2 and 4), It will be convenient to agsume that & is
defined not only on M® — % but also on #¥ =the boundary
of ¥; of course we could as well consider a & defined

on M" -~ T but it is more convenient to state our results
in terms of a smooth set of defects.

We shall consider three kinds of elementary
operations which transform one ordered medium (%,®)
into another (Z7,&’).

(0) Isotopy (i.e., “moving things around”): This
means that we consider a 1-parameter family of
diffeomorphisms of the physical space &,: M" —~ M" such
that 1< [0,1], &, is the identity, and =’ =¢,°Z,

P’ =dod,,

(1) Positive surgery of index x: We consider a
smoothly embedded r-ball D"=D*xD"™ c M" —intS, such
that

DV ax =aD" (133 = 3D  x D",
We can define a new ordered medium

=2 U(D*XD"), &'=@ |M7—intS’,

Remarks: (a) Remember that
§(D* X Dm¥) = gD X D" U DA X g pnx,

where the two terms of the right-hand side are glued
together along the common 3D* X 3 Dm=*1 = 3 (3 D* x Dn™})
=a(D**xpD"*), The new %’ is obtained by gluing & and
D x D glong aD* XD and smoothing the result. One
says that £’ is obtained from = by aedding a handle of
index X.

(b) Up to isotopy the passage from the submanifold &
to the submanifold ¥’ is completely determined by the
x-ball D* % (the center of D"?*), Notice that (up to homo-
topy) there is only one trivialization of the normal bundle
of 2D* in 3% which extends to a trivialization of the
normal bundle of D*x (center of D**) in M~

(¢) The fact that T has a spine of dimension < & means
exactly that T is obtained from ¢ C M" by adding handles
of index < k.

(2) Negative surgery of index »: We consider a ball of
dimension A D* embedded smoothly in £, in such a way
that 3D*=D* (1 3% meeting 0% transversally. One can
extend D* to an embedding D* X D" C X such that D* is
identified to D*X (center of D"), with 8(D*xDr*)N 35
=(D*XD"M) (135 = DX D> Then one can “cut = along
D and define
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Z'=% - D*XintD">

(which, up to isotopy, is completely determined by D*),
Assume now also that

[¢ |aD*]=0cm,,V.
Then there are extensions of & to M"-Z2’; call ¢’ such

an extension. We have obtained a new ordered medium
=, e).

Remarks: One can think of [¢ |0D*] (element of
7,.,V, well defined only up to the action of some element
of #,V) as being the “physical obstruction” for realizing
the negative surgery. Of course, no such obstructions
exist for positive surgery.

In physical terms, one should always think of the
points of % as being at higher energy level than the rest
of M", So there is a “core energy” proportional to the
“size” of the set of defects and this energy will tend to
be spontaneously reduced. This means that negative
surgery will tend to happen all by itself while positive
surgery {(as well as isotopies streching ) need an input
of energy from outside. Again, in principle, positive
surgery of higher index should require a larger energy
input of energy than positive surgery of lower index.
With a very large input of energy one could excite all of
M" (hence make M" =32, which is very nongeneric) and
hence pass from any (T, ) to any other (Z’, &').

On the other hand, our surgery operations (and the
isotopy) are the minimal geometric changes one can
make on the set of defects. If one introduces outside
energy “petit a petit,” by small amounts, the kind of
deformations of the set of defects one should expect are
isotopies and surgeries.

We consider now a less “elementary” deformation of
Z. Start with a handle decomposition of T, and let
D?x Dt Dex D" be two handles of this decomposition,
such that
prg=n-=-1.

We shall define a purely topological operation {no &
involved) of Crossing a p-handle with a q-handle.

It is convenient now to think of T as being obtained by
thickening some spine I" such that the balls D*=D#
X (center of D™?) and D = D¢ X (center of D"7) are con-
tained in T (in such a way that int D?, int D? are open
subsets of I'). Let *, € D?, * & D be the centers of the
corresponding balls and consider a smoothly embedded
line segement

[0,1]% mm

such that L(0)==*,, L(l):*q; Lo,)nr=¢, Llo,1] is
not tangent to D? or D°, Without any loss of generality,
assume that M" has a Riemannian metric such that L and
D? (respectively D?) are actually orthogonal.
By definition, an infinitesimal crossing data is a
trivialization of the normal bundle of L in M",
vL & Re-!
such that (T, D?) and 8(T, I?) are transversal.
infinitesimal drossing data "
b9
™ pn-1
vL —~R"

1

Two
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are, by definition, homotropic, if there is a homotopy
of trivializations,

g
vL =+ Rt

connecting them so that 6 (T, D#), 6,(T, D% stay trans-
4 4
versal for all /< [0,1].

If #> 4 there are exactly four distinct homotopy
classes of infinitesimal crossing data. To see this it is
better to give an equivalent but asymmetric form of the
definition of our infinitesimal crossing data. Instead of
a 6 as before we consider a trivialization

8’ -
vL u*pL e T*pDP

such that 8’(’1"*qu) and T*PDP are transversal.

Then, one can perturb a given 6’ by changing via a
“half-twist” the orientation of '(T, D)= (T, D*), or by
combining 6’ (via a “full twist”) with the unique non-
trivial element of 7, SO(n - 1)=Z/2, or by doing simul-
taneously both operations described, It is an easy
exercise to prove that in this way we get exactly all the
homotopy classes. Of course, if #=3 there are infinitely
many classes [since 7, SO(2) = Z]. The situation for
n=23 is described by pictures in Ref. 1.

A crossing data is, by definition, a local chart

RS
such that R"={(x,,...,%,, ¥;,...,9,, 2)} and

(a) ¥R N (TUL)=L U (a small open p-ball in D?)
U (a small open g-ball in D9),

®) LY ={x=vy=0, —~1<z=1}
() (D) ={y=0, z=1},
(d) w'l(D“):{X::O, z—_—;-l}.

Two crossing data are isotopic (by definition) if the
germs of (x=0), (y=0) along L vary by isotopy, stay-
ing transversal. There is a natural bijection between
homotopy classes of infinitesimal crossing data and
isotopy classes of crossing data. This is quite clear
intuitively, and not hard to prove, anyway.

Given a “crossing data” we can use it in order to
change the position of T in M" to a new 3 ,C M", obtained
by letting D?(D?) cross D#(D?) along L, staying in the
“plane” (v =0) [respectively y(x =0)]. The two results
are isotopic in M" so there is no difference whether
D? crosses D or D? crosses D?. {The formal definition
goes as follows: One considers a smooth function
z=~h(y) such that 2(0) > 1, k{y)=~1if iy! is large and
one replaces D¢ by dlx=0, z=hiy)].}

%, is hence just the image of another smooth embed-
ding ¥: = —~ M", The isotopy class of ¥ depends only on

the isotopy class of ¥.

Now, consider x,=L(1/2) and two small balls: &e"
of center *,, orthogonal to D* and art! of center *,
orthogonal to D¢, By orienting (in any arbitrary way)
dA*! (AP and joining them to x, along L by the
obvious paths one obtains two elements

a em M =2,x), B,€m (M~ x0).
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We shall consider the Whitehead product
3. ln,,81=l,0,,0,6]cm, V=1,,V

n~2" °

We can now state our

Main vesull: Let (5,®) be an ordered medium and ¥
a crossing data giving rise to £, C M", The following two
conditions are equivalent:

(1) There is an ordered medium (Z,,$’) such that one
can go from (Z,®) to (Z,,¢’) by a finite sequence of
operations of the following type:

(1a) isotopy.
(1b) negative surgery.
(1¢) positive surgery of index x=0,1,

(1d) positive surgery of index x> 2, not touching (a
neighborhood of) L.

(2) [@4n,,®,8]=0em, (V).

In particular, if ¢,, ¢, are two crossing data correspond-
ing to the same L, one can pass from (Z,®) to some
(Sy;,®1), by operations (1a)—(1d) if and only if one can
pass to some (Z4,,%}) (by the same kind of operations). 7

The proof will be given in the next section.

Remarks: I The three-dimensional case (p=¢=1) of
this theorem is covered by our previous result.’ Also
Ref. 1 contains several drawings which might help
understanding the next paragraph.

II. ¥ p+¢ <n -2 there is no obstruction whatsoever
for crossing. (It can be done by isotopy; see also our
last paragraph).

111, If p +4 =n the problem is very different: One
wants to get rid of (isolated) intersection points between
a p-dimensional cell of T’ and a ¢~dimensional one. In
“high dimensions” (p > 3, ¢ = 3) this is taken care of by
classical arguments: Whitney for the case m,M"=0 (see
Refs. 11 and 12 or Kervaire in the nonsimply connected
case.®) If n=4, p=g=2 the problem is largely beyond
the present state of the art. (See however the more or
less recent results of Casson.'?)

IV. Only the positive surgery of index <k is
“physically relevant.”

3. PROOF OF THE MAIN RESULT

We consider

Re={(x,,...,x )}, Re={ly,...,»)}
with their canonical orientations,
Rr=RV¢ = {(xu ey N Ve ’yayz)}

and the linear subvarieties (of R7™)
Y={x=0, z=-1}, X,={v=0, z=1(}.

The z axis, R=1{x =y =0} is oriented canonically.

We consider, like in the previous paragraph, small
disks: A9"'C {x =0}, oriented like (- R) xR, centered

at (x=0, y=0, z=1) and &*" C{y =0} oriented like

R XR?, centered at {x=0, v=0, z=~1). Their oriented
boundaries give rise to well-defined elements,
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T

Y
Lo,o,O)
z
¥ FIG. 1.
9% z,
~4

a,en,R" =X, -Y), g enR"-X -7),

defined as in the previous section (except that now we
have fixed their signs). So we have a well-defined
element

[ap9 ﬁq] € ﬂptq-I[R" _Xl - Y! (0’0’0)}‘

In Fig. 1, we have represented X, and Y in the three-
dimensional case, where p=¢=1. In Fig. 2, we show
what happens after X, has crossed Y, along the z axis,
staying in the plane y =0. We achieve this by changing
X, into X!, where X/, looks like X_, in the neighborhood
of the z axis, and like X, in the neighborhood of infinity.

[Remark: Up to isotopy, there is no difference in
between X, UY CR® and X_, Y Y TR ]

Let Z,=X,VUYUR and U,=R" - Z,. Consider now {,,
/y € R and K some (let’s say compact) topological space.
If fiK — U,, is a continuous map, one can always con-
struct another continuous map F:K X[/, ¢ ] = R"X[t,, 4],
commuting with the projection on the {¢,, ¢ ] factor, such
that F(K x¢)~ U,, F| KXt =f. (The reader should think
of the “continuous operation” which changes Z,, into Z,
by sliding X;, along R, and, corresponding to this
continuous deformation, the operation of pushing f(X)
into U,.)

Fy It is easy to see that the homotopy class of K=K X¢,
—U,, depends only on the homotopy class of /. In this
way we get a canonical homotopy equivalence (well
determined up to homotopy)

H U, —U, .
B2ty to ty

In U_, we consider the homotopy class f:S™2—U_,

X2

FIG. 2.
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defined as follows: In the plane z=—$% consider the
polydisk:

Al ={zx?<5, Zy?< 5},
oriented like R?xR¢, The boundary 34" =((Zx}=5)
X (2y? < 5)]U [(2x% < 5) X (£y2 = 5)] with its induced
orientation, can be though of as a homotopy class
§m*—U_,, which is, by definition, our f.

Lemma A: The map S"™? —~R" - X, - Y defined by the
composition
H.. .
smly, =y lri_x -y
is in the same (free) homotopy class as the Whitehead
product
[aP’ ﬁq]:sn-z —~R" —Xl - Y‘
Pyoof: Consider the following two subsets of
R"-X,~-Y
A=(Ex]<8)X[(Ty} +22=5, 2> 0)U(=xi<5, 2=0)],
B=(Tyi< B)x[(Exi+2*=5, z<0)U(Zx2<5, z=0)].
Clearly AN B=A"1x(z=0) and moreover C=A UB is
a piecewise differentiable submanifold with boundary,
of dimension n -1 in R" - X, - Y, homeomorphic to
§#xS% — {the interior of a smoothly embedded

{n ~1) -ball}. Our Fig. 3 represents C in the three-
dimensional case, p=¢=1. A B is now the square

{-1sx<1, ~1<y<1, 2=0}

and our base point x, is the center of this square.
Contained in C are three oriented curves, drawn in fat
lines «, B, y. @ and B are respectively representatives
of o, €m (R®~X,~Y) and 8, € 1, (R* -X, ~ Y). Moreover,
v is in the same free homotopy class as the commutator
[a,, 8,]. Properties (0)—(4) listed below should be
intuitively clear in this picture,

We can also observe the following facts:
(0) 3C=[zx2=5, Zyi+2>=5, 2> 0]
Ulzx2+2°=5, Ty?=5, z2<0]

(the intersection of the two terms of the right-hand side
being [£x2=5, Tyi=5, z2=0]).

(1) The projection R"=R*XR¢XR -* R* XR? induces a
homeomorphism

aC = At
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FIG. 4.

(2) If we orient 247! a5 before and give 3C the
induced orientation via 7, then 8C (considered as a
continuous map $"? =~ R" - X, - Y) is in the same (free)
homotopy class as [a,, 8,].

@ Itc{-2,1], aCcrz,=4.

{(4) If P 3C, the line segment joining P to (n(P),
z=—73) does not touch Z_,. In particular, in U, 3C is
in the same homotopy class as f: S"?—U_,,

All these facts together, imply our Lemma A.

Remark 1: The exact signs in the previous considera-
tions are immaterial for the rest of the proof. All we
need is that

[Ci’, B,]:iioH-z,x ol f]

Remark 2: If we define Z)=X,0Y U[x=y=0,
ze(t,-1]], U;=R" - Z] we can define homotopy
equivalences H;O,tlz U;O" U;l as above and prove an
analogous lemma.

(free homotopy).

Remark 3: 1f D?, D% are oriented, and are joined by
L, and if a crossing data ¢ is given, we have constructed
an element [a,, 8,]€ 7,,,.,(M" — %) which a priori depends
on the various choices of orientations and on the homo-
topy class of L. It is easy to see that it actually does
not depend on ¥, This, together with the rest of this
section proves the last sentence of our main result.

Lemma B: (1)=>(2) =

Proof: Without any loss of generality sC CM" - %,
Moreover, any time one passes from (£,%) to (£,3) by
one of the operations (1a)—(1d) one can still assume that
2C stays outside Z.

For (la), (1b) this is obvious; for (lc) it follows from
general position since dimoC =n - 2; for (14d) it follows
from the assumption that the corresponding surgery does
not touch L (and hence 3C).

So we can assume that ¢ |13C =&’ [3C. But then
Lemma A shows that 3C is null-homotopic in M" - 3.
Hence

o, la,, gl=[eaC]={e’ [2C]=0c7,,, (V).
This proves that (1)=> (2).

Lemma C: ¥ @,la,,8 =0 7,, (V) one can pass
from (Z,®) to an ordered medium of the form (=,,¢/)
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by one positive surgery of index 1 followed by one
negative surgery of index » — 1, and isotopies. L

Proof: With the notation from the begining of this
section, consider X,V Y as part of (the spine of) = and
X VY as part of (the spine of) £, Call the correspond-
ing spines I', T"_,. We can consider a positive surgery
of index 1 which goes from (2,) to

%, =% + (a handle of index 1 along L),
@, =0 (T,

T, has a spine R, =T with X, UY replaced by Z! (see
Remark 2, after Lemma A). We can also consider
R,=T with X, v Y replaced by Z;. Let N(R,) be a regular
neighborhood of R, in M". So N(R))=%, and N(R,) varies
by isotopy. One has an isotopy of ordered media

(NR), @]

with / varying from +1 to -2.

(N(R,)=the set of defects),

One can go from N(R_,) to =’ by one negative surgery
represented by cutting exactly along a™!X(z=-3), and
isotopies. For this surgery to be “physically realizable”
one has to have & _,{2[A™! % (z= - )} =0 [in T yrg-1(V)
=17,.,(V}]. But by Lemma A this is equivalent to
$,la,,8,]=0. And so the proof is finished. The argu-
ment is shown pictorially in Fig., 4, The point is that
in R®* - N(R_,), the curve v (from Figs. 3 and 4) and
3[a2x(z = - 3)] with the good orientation are homotopic.

4. BRIEF PHYSICAL CONSIDERATIONS

Topological solitons are of interest in two different
domains of physics. In condensed matter physics, in
order to describe defects or textures of ordered media.
In relativistic field theory, in order to describe
particles or pseudoparticles (instantons).

For the physics of condensed matter, the canonical
dimensionality to be considered is dimension three,
This situation is discussed in detail in our previous
paper.!®

In relativistic field theory, however, the canonical
dimensionality is four and this was one of our motiva-
tions for extending the analysis to arbitrary dimension.
Another motivation is that in this more general context
the real issues, in particular the connection with graded
Lie algebras, become clearer. It should be mentioned
here, that in the present field theory models, involving
topological solitons, the manifold of internal states V is
generally a Lie group G: in such a situation our present
paper shows that there are no topological obstructions to
crossing, since all the Whitehead products vanish,

It is worth recognizing that these obstructions to
crossing lead naturally to a confinement mechanism,
For instance, in dimension three, if one closed string
is entangled with another closed string, and if there is
an obstruction to crossing due to the noncommutativity
of 7., separating one string from another (assuming
that each one has a given size) will cost an energy
increasing linearly with distance, due tothe creation of
extra defect volume connecting the two strings.

Similarly, in dimension four, if 7, acts nontrivially on
T, one has obstructions for disentangling closed strings
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from “bags.” In this sense entanglement leads to con-
finement; this paper provides the theory for the entangle-
ment of a p-defect with a g-defect in a space of dimen-
siond=p+q+1.

In the Appendix of our first paper we have discussed
the interaction of two punctual defects in dimension
two. If 7,V is noncommutative the way such defects
interact may depend on the path followed to join them:
For instance two point defects may annihilate each other
if they are joined along some path and not if they are
joined along some other path,

In a space of dimension d, a point defect (described
by 7,.,) turning around a defect of codimension 2
{(described by 7,) may find its topological character
changed, if 7, acts nontrivially on 7,_,. And again, two
point defects may annihilate along some path and not
along some other [the simplest materials where this
effect might be observed are the ordinary (uniaxial)
nematic liquid crystals, for which V=P,, the projective
plane]. Note that, in these situations, one is
considering the interaction of a p-defect and g-defect,
with p=0, g=d -2 and p +g=d - 2. (See also Ref. 5.)

It looks as if all the algebraic structures built in
homotopy theory lead to simple physical “effects” (in
real or gedanken experiments) when interpreted in terms
of these topological solitons., This is an encouragement
for further physico-mathematical collaboration.
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Altman’s theory of contractors and contractor directions is applied to equations for connected irreducible
Green’s functions of Klauder’s augmented quantum field theory in the ¢* model, and sufficient conditions

for existence of solutions are discussed.

I. INTRODUCTION

Recently, Klauder® proposed an alternative quantiza-
tion scheme, based on a different choice of the measure
/[)'® used in the definition of the generating functional.
The theory can be formulated in operator formalism as
well as in Green’s function formalism. Here, we con-
sider the ¢* model in Green’s function formalism. In
terms of irreducible many-point functions, the first two
equations of the infinite sequence of equations read

Gy (p) + 5 [ dk(k® = m®)G,(p,~p, b, ~k)
+ 20 [ A%k, d* Ry d* kA G, Ry Ry D, ~ Ry —ky =)
X Gk, + ky +5)G kg, — b, —ky =Ry, B, + Ry +p,—p)
+Gy(p, = p,ky, =k )G i) Gy Ry, leg, — Ty, By = By ~ F3)
+ Gyl Ry Ry, ~k, —ky =kg, p,— P =0 (1.1)
=G, +L[K*G,**2%(G31)] + 5 [K*G ] + (OA[G,**3 X (G3Y)]
+ 3G, *G* (G ]+ A[*G,]=0 t.2)

[for the meaning of Eq.(1.2), see Fig.1], where the

G, (n = 6} stand for connected irreducible (in any chan-
nel) n-point functions. The integrals in Eq.(1.1) should
be interpreted as subtracted at p2=m?, i.e.,

‘ 2 g
/;t4k(k2—mz)(z‘l(p,—[),k,—k):'/’;’a dp Z)EG,—Z) d*k
X (B2 = m?)(p'2 = m2RG, (', = P’ Ry = k) (p% = m? —ie)?,
1.3)

etc., in particular,

— + 5K +2A@ +2A@K+23@(=0

A oKL e
+2 +A€§( +A /<+A@ +Ag_
+}\@i =0

FIG, 1, Graphical representation of Eqs, {1.1), {1.2}.
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Ry @ kyd*R,Gy(p, — b, ky, = k)G k)

XGylky by, =k oy — Ry —ka)]

ren

= [Tap =2 [eR,6,00,~p R~ )
m2 d(prz) 1¥4 ’ LA B 1

g d
2 2)2 L2 3
X (p'% = m?) [nz ARy )a,(m d*k,d*k,

X G, k) )G Uy, g, = Ry Ry —hey = ko) (1.4)

so that every term in (1.1) has a simple pole at p? = m?®.
Consequently, there is no possibility of calculating
“dynamically generated” mass. On the other hand, an
interesting feature of Eq. (1.2) is the absence of the
terms shown in Fig.2, which appear in the Schwinger—
Dyson equation for four-point function in the conven-
tional quantization and have undesirable asymptotic be-
havior. Because of the absence of those terms in Eq.
(1.2), one cannot perform a subtraction (renormaliza-
tion) in Eq. (1.2). In other words, the integrals in

Eq. (1.2) must be interpreted as they stand.

In this note, we consider the descending problem: To
determine lower many-point functions when higher
many-point functions are given as “boundary condi-
tions” to the functional differential equation for the gen-~
erating functional.

lI. DESCENDING PROBLEM FOR THE EQUATION
FOR TWO-POINT FUNCTION

In this section, we consider Eq. (1.1) when

G4(/71’/72ap3’ il 2l 28 ‘[)3) and Gs(pp = DP1sPasP3sPas
— py = py— p,) With desirable asymptotic behavior are

specified as input.

Let us assume that G,(p) has no zeros, i.e., G,(p)
has an unsubtracted spectral representation. Then one
can rewrite Eq. (1.1) as follows:

L(p) + (p* ~ ) {M(p) + @21 [G, 2 *(KL)[(p)}

> XX

(2.1)

FIG, 2, Diagrams that are
present in the conventional
Schwinger—Dyson equation
for G4, but absent in Eq.
{1.2).
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M{p)=3[K*G,)(p)+2x[*G,l(p), @2.2)
where
L(p): ={(p?* ~m?)G,(p)]". (2.3)

Some comments are in order. If G, does not have a
zero, L(p) does not have a pole, so that one can expect
nice behavior of L. On the other hand, if the two-point
function G, has a subtracted spectral representation

Go(p) =i(p? = 1) [ dsp(s)(p? — s — de) (s = p3)* (2.4)

with asymptotic behavior G,(p) 4 .~ ($?)°, then the
pole-iree object to be looked for is

R(p)=(p* = 1O[(p? - mA)G,(p)]*
and we get the following equation
2(p) +[ R(pHM(p) + (2)2A[G *** *(RV)] (P} [ =
2

- 2
R(P)=p7:%‘

(2.5)

(2.6)

However, this equation cannot be consistent because
asymptotically ®(p)~ (»?)° while the second term on the
lhs behaves asymptotically ~ (p?), which is a conse -
quence of renormalization. If one takes recipe

K*Glp= [ aon [Tt [

x (kz - mZ)(puz _ m2)2G4(p" , —P” , k, - k)
X (p?—m?—ie)y?, 2.7

etc., then G,(p) cannot have a pole at p®=m?, so that
such a recipe is not acceptable. This is an important
difference from the descending problem in the canonical
- quantum field theory.? Therefore, Klauder’s argu-
ments? in favor of subtracted spectral representation do
not apply to the case of A#0.

Suppose G4(/71,P2103,"P1" ",/)3) and Gs(pl’—pppz,
DssPgs = Dy — Dy — by) are so chosen that (M (p)l = ¢, = 0.
Then, an interesting feature of the nonlinear operator A
is that it has first divided difference.

Definition 1: If a linear operator V(L,,L,): /) (&)

X M)cB,xB, ~ (B, Y) satifies the relationship

VL, L)L, = L) =A(L,) = A(L,) @2.8)

V is called the first divided difference operator of the
nonlinear operator A,

It is easy to see that the operator
v(L,,L,)

@)2A[G**2 > (K )]
{M+ @2[Gx¥*2* (KL )[H{M + (2)2\[G,**** (KL, )[\K

(2.9)

satisfies the condition (2.8). So, let us try to apply
Altman’s theory* of two-point contractors.

Definition 2: A map R: XXX~ £(Y— X) is said to be a
two-point contractor for {nonlinear) operator P with
majorant function @ if

lP(x +R(x,x)y) - Px = 3|l < QlIyll, llx - xI|) for
x,;eX, yeY whenever x +R(x,;)y e D(P).
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Lemma 1: If |[V(L,, L,)"| <c, for some constant c,,
and

IV (Ly,Ly) = V(Lg, LI (1L, = Lyll + 1L, = L,I1)
v Lu L21L3’L4€D (A)

then W(L,,L,):=V(L,,L,)r* is a two~point contractor.
(For proof, see Altman.?)

It is easy to check that our V satisfies the conditions
of Lemma 1, if /) (A) is restricted to be sufficiently
small and/or ¢, is sufficiently large. For the theory of
two-point contractors to be applicable, the nonlinear
operator A need not be continuous, but closed. In other
words, G, may be a distribution. So, we take the input
{G,(*),G4(p,~p,***)} and the Banach space IB, 2 L so
that the map A is closed. We have the following theorem
(Altman?).

Theovem 1: Let A: ) (M) cIB,—~ Y be a closed nonlin-
ear operator with /) (1) DS(L,,p), and L, and L! be so
chosen that WA(Ly)i<n, 1 Ly— L§lI< By, q: _2nc3/32 <1,

p: = pnt*, t*r =30.q%"1, Suppose that 1 W(L, L) <8

for L,Le/) (M) and
AL +W(L, L)) =A(L) = J|l < Bc,@BIIJIN + 1L = ZIDIII

for L,L<S whenever L+ W(L,L)J=S. Then the se-
quence {L } defined by

Lml = Ln - W(Ln’zn)A (Ln)’ L_nol :Lnol W(Ln’ zn)A(Lml)

converges to a solution L* of the equation A(L) =0, All
the L, ’s lie in S and the rate of covergence is given by

IL¥ = L || < t*q 15y,

Our next task is to verify that we can choose /J (A) so
that the conditions of Theorem 1 are satisfied. Of the
three constants 3,7, c,, one can choose and ¢, sufficient-
ly small so that the condition ¢ <1 be satisfied, while
B is always larger than 1 For ¢, to be small, it is de-
sirable that | M(p)(p® — m?)!| is large. In other words,
for the theorem to be apphcable, G, and/or G4 should
be large even when A is small. This is a very strang.
feature of the descending problem in the augmented
quantum field theory. Alternatively, one can restrict
/) (d) so that ¢, is small, if one finds a nice L, by luck.

i1l. DESCENDING PROBLEM FROM GIVEN HIGHER
MANY-POINT FUNCTIONS

Next question one might ask is whether one can de-
termine G, and G, if G; and G, are given. Becuase of
complicated constraints, one cannot specify Gy and Gy
arbitrarily. But one can pose the following problem,
Suppose the function H(p)=[*G4(p,-p,***)] and sum of
terms in Eq.(1.2) involving G, or G,, which we denote
by N, are given as input with appropriate asymptotic
behavior. Then the equations to be considered are

L(p) + ({2AHK + 3[K *G, K + (2)2A[G**2 * (K L) }(p)) =

=0, 8.1)

= Gy + N+ 5[K*GE*2* (KLY + (4M\[G ¥ ¥ *(KL)**2] = 0.
B.2)

As Gn(pl; ..-,b,) has a pole when a p, is on mass shell,
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one cannot metrize the space of candidates for G,. So,
we define semiamputated many-point functions

T (P ab) =1 (02 = m2C,(py, .. . ,b,) (3.3)

Equations (3.1) and (3.2) are rewritten as follows:
L(p)+ (2aHK? + 3[K-*T ]

+ (2)2A[ (K tyrx2xT ox2 ¢ (K-1L) [ (p)) K (p) =0, (3.4)
- [, + KN+ 5[ )*T o+ *(K 1 L))

+ (@A )4 *T ¥ *2 * (K1 L)**2] =0, (3.5)
Now, we define the norms of semiamputa;ted many -
point functions by
IT,llp, = @nsup| T(p, ..., )|

+an2sup‘il;11’pizyer"(pl"°"Pn)" £>1 3.6

so that the Banach spaces of semiamputated many-point
functions do not contain functions with undesirable as-
ymptotic behavior. Now, one can regard Egs.(3.4) and
(3.5) as an operator equation in the direct sum of
Banach spaces, IB,&1B,. For one or another theorem
concerning contractors to be applicable H must be large
and N must be small, The former is a very odd re-
quirement, but if one gives such H and N as input, one
can apply Altman’s theory of contractor directions.*

Definition 3: Let X be a complete metric space and Y
be a real or complex Banach space. Let P be an opera-
tor P:)(P)CX—Y and x< X. Then 7 (P)=7.(P,q) is
to be set of special contractor directions for P at x
CD(P), if there exist a positive constant ¢ <1 and a
function B< A such that for every y< 7, (P) there exist a
positive number ¢ =¢(x,y) and an element X</) (P) such
that

I|PX - Px —eylt < gellyll, dF-x) < B(liyl),

where £ is the class of increasing continuous function
B(s) such that B(s)> 0 for s> 0 and

Jo's™t B(s)ds < for some a>0.

Theovem 2: Suppose (1) the operator P:/) (P)CY is
closed on U :=/)(P) N S(x,, 7); (2) for any x € Uy=)(P)
N S(x,,7), set of special contractor directions is dense
in some ball in ¥; (3) = (1 —q)t[3s™ B(s)ds, a
=||P{xellexp(l — ¢g). Then there exists an element x*clU
such that P(x*)=0. (For proof see Altman.*)

In application to our Egs. (3.4) and (3.5), we take
%o ={Ly, Tyt ={0,0} X and define the norm

I{L, T glly=cillLllm, +c5li Tl g, 3.7
with appropriate ¢, and ¢;. Then, the number
a=[c, @M IHK) | + clINK*|| Jexp(l - ¢) (3.8)

and, consequently, » can be chosen sufficiently small
so that the conditions of Theorem 2 be satisfied. Here,
one need not assume that the range is closed,

The snag of this theorem is, however, that it does not
give an algorithm for construction of an approximate
solution. In order to formulate an algorithm, one has to
assume Fréchet differentiability of the map involved.
Let us write Eqs. (3.4), (3.5) abstractly =(L,T',;H,N)
=0. If one restricts Banach spaces of L and ', from IB,
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and IB, to IB; and B}, respectively, so that the map =

is Fréchet differentiable with respect to L and I}, and
the Fréchet derivative Z#(L’, Iy; H, N; , ) is invertible
for {L' s r;}e@ and some other conditions are satisfied,
one can apply Newton—Kantorovich type schemes, where
&is an appropriate convex set in B, ®IB), (See Altman,?*
Janko, ®Kantorovich and Akilov,® or Krasnosel’ skii

et al.™)

IV. RENORMALIZATION

The next problem is the renormalization of a solution
of equations with a given input. In general, G, obtained
as a solution of Eq.(1.1) or (3.4) has a residue z#1 at
pP=m?, and T, obtained as solution of Eq.(3.4) does not
assume the value I'(0,0,0,0)=A. Therefore, we must
renormalize G,:G;=z"'G,. Then Eq.(1.1) is rewritten as
follows:

Gy +3[K*Gr] + @02A[GrF*2 + (G ) +2A*G] =0 (4.1)

with G7=2z"1G, for any ncZ’, In other words, Eq, (1.1)
is invariant under the renormalization. However, one
cannot make I', assume the value I',(0,0,0,0)=A for a
given input. An interpretation is that X in Eq.(4.1) is
not the strength of interaction but a parameter. On the
other hand, if one takes with I',(0,0,0,0)=x and G,{p)
with unit residue at p®=m?, Eq.(4.1) can be regarded
as a linear constraint on Tylg, ~q,"*).

Alternatively, if G lor T'y) and G, are given, Eq.(4.1)
becomes a nonlinear constraint on I',. Though we do not
have a proof, it seems that this constraint can be sa-
tisfied by I, such that I',(0,0,0,0)=x. Rather there
seem to be infinitely many I',’s that satisfy the
constraint.

V. CONCLUDING REMARKS

So far we have discussed descending problems and
existence theorem. On the other hand, if one begins
with G, and T', as input and ascend the hierarchy of
equations, G4 need not be large, but there appear many
linear and nonlinear constraints for G, (> 6). Though
it seems that there is a continuum of sequences of func-
tions that satisfy these conditions, we do not know how
to construct (approximately) one or another sequence of
these functions with proper symmetry.

On the other hand, so far as existence of solution is
concerned, Fréchet differentiability may be violated in
one way or another.
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Spherically symmetric static conformally flat solutions in
Brans-Dicke and Sen-Dunn theories of gravitation
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Vacuum field equations for the static spherically symmetric conformally flat metric are obtained in
Brans-Dicke and Sen-Dunn scalar-tensor theories of gravitation. Closed form exact solutions to the

field equations are presented and studied in both the theories.

1. INTRODUCTION

Brans and Dicke' have formulated a scalar-tensor
theory of gravitation in which the tensor field alone is
geometrized and the scalar field is alien to geometry.
Recently, Sen and Dunn® proposed a new scalar-tensor
theory of gravitation in a modified Riemannian manifold
in which both the scalar and tensor fields have intrinsic
geometrical significance. The scalar field, in this
theory, is characterized by the function x®=x"(x') where
x! are the coordinates in the four-dimensional Lyra
manifold and the tensor field is identified with the
metric tensor g;; of the manifold.

The field equations in vacuum given by Sen and Dunn
for the combined scalar and tensor fields are

vk
Gy =)y - 2gasx 2™), (W

where w=; and G,, is the usual Einstein tensor. It was
pointed out that these equations are identical to the
Brans—Dicke equations in vacuum, namely

Gij:wd)'z('f),id),j— ‘%gij(b,kd)’k) @)
+ o7 (o iy - g,;Lip), D=0,

if the scalar function satisfied the condition
b,45= 4P =0

and w=12. However, the gravitational constant must be
redefined, Brans® and Mahanta and Reddy*-$ gave
spherically symmetric static solutions in the Brans—
Dicke theory of gravitation, while Sen and Dunn® and
Halford’ have obtained the same in Sen—Dunn theory.
Penney® and Gurses? have obtained exact solutions for
massless scalar meson fields with a conformally flat
metric, Recently, Ray!® has given a complete set of
exact solutions for both massive and massless scalar
mesons in a conformally flat metric. The present note
is an attempt to obtain exact solutions for both Brans—
Dicke and Sen—Dunn scalar-tensor fields in a static con-
formally flat space.

2. FIELD EQUATIONS AND SOLUTIONS

We consider the spherically symmetric conformally
flat line element

ds? = e (@i + ¥do* ++* sintudd® - drt), (3)

where « is a function of » alone. For this space—time
the nonvanishing components of the Einstein tensor are
given by

3 v/
G{:e"" <an’2 +2%) ,
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’2 o’
G%:Gg:e'a (O/”'F%—'f-?), (4)

&'2 o'
Gi=e™ (oz”+——+2 )
4 r

Here a superscript prime indicates differentiation with
respect to 7.

A. Brans-Dicke Theory

Taking ¢ as a function of ¥ only and using (4) and (3)
in (2), the Brans—Dicke field equations, in vacuum, can
be written as

2
3,02 @‘_',E’_(ﬂ ¥ 1.9
SRS (S ) 50

4 Ty ® b ro’
) (5)
v @ 200w e\ 1,9
+4+r"2(¢>+2a e

" ’ ’ 1 _
o+ (0/ +1’>_

It can be easily verified that when the scalar field ¢ is
constant the field equations yield a solution which de-
scribes an empty flat space—time in Einstein’s theory.
When ¢ is not a constant, but is a function of # only,
the Brans—Dicke field equations (5) admit the closed
form exact solution given by

(’V:C/?’, ¢>:¢Oe-C/”
with (6)

3
W==73,

where ¢ and ¢, are constants of integration. Thus the
only spherically symmetric static conformally flat
solutions of the Brans—Dicke vacuum equations are
flat space—time and

dst = e™dr* + 2dv* + v sin7 da? — di?)
with (7)
e*=e", p=ce™’", and w=-3/2.

Also it can be seen that when » —« the solution (6)
reduces to empty flat space—time in Einstein’s theory
with b= (ﬁo.
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B. Sen-Dunn theory

Taking the scalar field x° as a function of » only and
using (4) and (3) in (1), the Sen—Dunn field equations,
in vacuum, are

14

20" w [x°
%O(’z-{"——:— s

e X

2
2
2 ’ 0/
st o (x
N 2(7>’ (®)

2
2 0!
a’ 20/ w (x
Q" et = (S
4 ¥ 2 (x > ’

which admit the solution
ds® = e*(dv* + Pdv* + 42 siny de* — df*) ©)

with @ = constant and x° = constant, which describes
nothing but the flat space—time. Hence it can be said
that a conformally flat static vacuum metric in Sen—
Dunn theory describes simply a flat space—time.

3. CONCLUSIONS

Closed form exact solutions have been obtained for a
static spherically symmetric conformally flat vacuum
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metric in the scalar-tensor theories formulated by
Brans and Dicke and Sen and Dunn. It is observed that
the only spherically symmetric static conformally flat
vacuum solutions in Brans—Dicke theory are the flat
space—time and the solution given by (7). It is also
found that a static conformally flat vacuum metric in
Sen—Dunn theory describes simply an empty flat
space~—time,
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Slow motion approximation in predictive relativistic
mechanics. |l. A noninteraction theorem for interactions

derived from the classical field theory?’
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By adopting an Aristotle invariant Lagrangian formalism (equivalent to canonically representing only this
subgroup of the Poincaré group) and imposing a certain separability condition and a Newtonian limit on
the Lagrangian, we obtain the most general Lagrangian up to ¢ ~° order that verifies these properties and
leads to a relativistic invariant dynamic (i.e., it satisfies the Currie-Hill equations). It contains up to

¢ ~? order, all the Lagrangians known up to the present time. It is shown that the interactions derived
from the classical field theory (CFT) do not admit approximated Lagrangians up to ¢ ~* order, and thus
this constitutes a noninteraction theorem for said interactions and somehow justifies some authors’
attitudes of abandoning the Lagrangian formalism (dropping the canonical character of position
coordinates) when they construct a Hamiltonian formalism for these systems.

1. INTRODUCTION

In the framework of predictive relativistic mechanics
(PRM), an isolated system of N structureless point
particles is governed by an ordinary second order
differential system over R¥,

dyl dol -

=t gt =D, (1.1
where the (! functions, which we will call accelera-
tions, must satisfy the Currie—Hill equationsl"‘*:

oul

& — 1.2

=9 (1.22)

€ a‘“; =0 (1.2p)

b ax{) — Y .

ol At ;
N LR S B AN (1.20)
akb 82’,,
. dul r . DHLl
gy = xp,) % a—‘(,;“ + (€, 0% = cuy 0k - 0 xyy = x,) “Né?’f
= Regyni+vuy),
(1.2d)
which state the invariance of the set of trajectories by

the Poincaré group. 7,7, 4,-+-=1,2,3; a,d,c,a’," -
=1,2,...,N; a is always different from a; 7;;, is the
Levi-Civita pseudotensor with 7,3 =+ 1; all indices
follow the summation convention; ¢ is the velocity of
light in vacuum; €’=¢€ =1,

On the other hand, the difficulty arising from a
Poincaré invariant Lagrangian formalism (the canoni-
cal realization of this group on phase space) is well
known for such dynamic systems because this assump-
tion leads to the Currie, Jordan, and Sudarshan®'® non-
interaction theorem: The unique systems which admit
this Lagrangian formulation are the free particle sys-

DResearch supported by the Instituto de Estudios Nucleares,
Madrid, Spain.

DPresent address: Physics Department, Queen Mary College,
London.
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tems (14} =0). In particular, Hill’s" and the authors'®
proof of this theorem make known the essential role
played by two assumptions: (a) the position coordinates
of the x! particles are canonical, and (b) the pure
Lorentz transformations act like a set of canonical
transformations. First attempts to circumvent the
noninteraction theorem coincide in substituting assump-
tion (b) for another less restrictive one, because
dropping assumption (a) would be equivalent to renounc-
ing the traditional Lagrangian formalism (we , however,
remark that a Hamiltonian formalism can be satisfac-
torily developed in which the position coordinates are
nol canonical®!Y). Thus, for example, in Ref. 12
(resp. 13) assumption (b) is substituted for the follow-
ing: the energy, the linear momentum, and the angular
momentum are assumed to appropriately transform as
regards pure Lorentz transformations (resp. the
dynamic system is invariant by space inversion and the
angular momentum is assumed to appropriately trans-
form as regards pure Lorentz transformations). How-
ever, in both cases one arrives at the two noninterac-
tion theorems for the two particle systems.

Moreover, the authors have recently proven8 that the
Currie, Jordan, and Sudarshan noninteraction theorem
starts to be effective above the ¢ order. Then the
most general family of approximated Lagrangians up
to ¢ order, possessing a Newtonian limit, is obtained,
although this family does not contain the approximated
Lagrangians up to ¢ order deduced from the classical
field theory (CFT).

All these facts have led to us adopt an Aristotle!* in-
variant Lagrangian formalism in this paper (this is
equivalent to canonically representing only this sub-
group of the Poincaré group and is also equivalent to
dropping assumption (b), although we impose a certain
separability condition and a Newtonian limit on the
Lagrangian. With the perturbation technique of ¢! ex-
pansions, we found the most general Lagrangian up to
c*® order that satisfies the previous properties. In
particular, it includes up to ¢ order the Lagrangians
obtained by means of: (i) classical fields theory,

(ii) Poincaré invariant canonical formulation, !* (iii)

© 1979 American Institute of Physics 25



Poincaré invariant action, ' (i) Lagrangians postulated
“ad hoc”, " (v) Lagrangians corresponding to a single

particle and a later symmetrization. *®

Moreover, we show by using the general dynamic
obtained in Ref. 19 (approximated up to ¢** order that
satisfies the Currie—Hill equations, is invariant by
space inversion and possesses a Newtonian limit) that
the Lagrangians derived from the CFT cannot be ex-
tended up to ¢ order because of their incompatibility
with the invariance equations. Thus, we obtain a non-
interaction theorem for the interactions derived from
the CFT.

As we believe the previous assumption (the Aristotle
group is canonically represented on the phase space) to
be the minimal condition we must impose in order to
be able to define, without ambiguity, the conservative
quantities: energy, momentum, and angular momentum
of the system, we conclude that at least for certain
interactions (among which are the well-known electro-
magnetic and gravitational interactions) only a descrip-
tion by means of approximated Lagrangians up to ¢
order is possible.

We think this result is the strongest at the moment
which justifies the attitudes adopted by some authors®'!
in dropping the Lagrangian formalism {(or more exactly
the canonical character of position cordinates x!) and in
constructing a Hamiltonian formulation for such
systems.

Finally, we include an Appendix dedicated to the
uniqueness of the Lagrangian up to ¢ order.

2. LAGRANGIAN FORMULATION INVARIANT
UNDER THE ARISTOTLE GROUP, DEVELOPMENT
INc™!

(A) Let us consider a dynamic system of type (1.1)
which is invariant under the Aristotie group, i.e., such
that it verifies Eqs. (1.2a), {1.2b), and (1.2c). As has
been shown in Ref. 8, the fact that such a system admits
a Lagrangian formulation compatible with its invariance
is expressed by the existence of a function L{¢; x}, vl)
satisfying the following conditions:

3L AL AL
R el ) 2.1
a0l ~axl 0 det (av;avg> 0, 2.1
oL
5 =0, (2. 2a)
R
< %—i% =0, (2. 2b)
b
: aL aL) _
N e (x’{, a—fg + vy —azg —0, (2.20)

where @ is a first order differential linear operator
defined as follows,

0

— 2.3
vy 2.3

0 i 0 ;
Q=5+ 5 + ui(xg, vz)
Equations (2. 1) merely state that the dynamic system
(1.1) is a Lagrangian one. On the other hand, Egs.
(2.2) point out that L(¢; x}, v{) is an invariant function
under space—time translations and space rotations
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(Aristotle group). We will also assume that L is in-
variant under parity.

As is well known, if the Lagrangian L admits a sym-
metry it is possible to automatically associate a first
integral with the corresponding dynamic system. Con-
sequently, Eqs. (2.2) permit the association of the
seven first integrals with the dynamic system (1.1},
Such integrals are traditionally identified with energy,
linear momentum, and angular momentum. These con-
served magnitudes are respectively expressed in the
following way:

; oL
HE’I);E;Z—L, (2.4&)
oL
P;=¢ 2.4b
j b 'a_v'fb: ( )
oL
J]- Enjk’.xﬁ W . (2. 40)
a

In this paper, we are going to limit ourselves to the
consideration of a dynamic system (1.1) that contains
only two particles (N =2). According to this hypothesis
the general solution of Egs. (2.2) will be an arbitrary
function of six independent particular solutions, for
example (following the notation given in Ref. 19)

- 1 1/2 = L0
v EA+ (xaa'xaa’i) y SF 2% Vaatis

I PSR i, =2 _ i =2
G2 Mo (Wi T 0gei), ¥, =0h0 =0, VEULU T,
(2.5)
where
Cm. = - . P [ S | i
na'nl:+1; 772:_17 x;a':’\u—xa'r Vyge = Vg — Vgt +
(2.6)

Therefore, we will hereinafter write

L:L(T7 S, q’ya,:‘y). (2'7)

It is clear that the dynamic system associated with this
Lagrangian is Aristotle and parity invariant.

(B) Next, we suppose that the Lagrangian (2.7) admits
a development on a power series of ¢! according to the
following structure,

L= Eliu"n @.8)
n=0

where the functions L%(, s, ¢, v,, v) are independent
of ¢. In addition, we will suppose that the following
conditions are verified:

LW =tem 2t - V(v),

. T -:_d) (2.9a)

}121°V(r)~rh.n:r V() =0 ( ==/

L® =g, (2. 9b)
2 ) 172

lim L =ce*m, [1— 1~ —EQ) , (2.10)

I

where m, >0 is the mass of the particle a. Conditions
(2.9) can be summarized by saying that the dynamic
system has a “classical Newtonian limit.” Let us re-
mark that L is the Lagrangian corresponding to a
system of two particles that interact through a V(r)
potential. Condition (2. 10) expresses the separable
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character of said interaction, i.e., when the distance
between both particles is infinite, the Lagrangian is
reduced to the one corresponding to free particles.

Let us now assume that accelerations p also admit
a development on a power series of ¢! in the following
way,
Z) }ﬁ /J-(n)‘ (2. 11)
n=0
uf,"" being independent of c¢. By introducing develop-
ments (2. 8) and (2. 11) into the Lagrange equations (2. 1)

and taking into account expressions (2. 9) for L‘® and
LY as well as (2.2a), we can easily obtain

1
m, [ﬂéo)‘ u(l)f + 7 =

n=2 n=2 c" a’U?
- 1 gL 144 S 1 aL™m
) = Q@ = P+, =
* prmm=s C" ov] 7xaa ,:21 " ooxg
=l,0,0,n-
2 (2.12)
where the following notation has been used:
2
D=1 ? + g S
2 (2.13)
By = (B >
Q My a_l‘§ ( 1)7

W) =rV(r).

Therefore, by matching the same order terms for et
on both sides of (2. 12),

. ; w o, .
Mo SN = =y, mu DR =0, (2. 14a)
;L™ aLm
> 9)- i pimi _ 727 _ Y
(n=2): g bty Fa ox§ v pesin
p=lye0.,n=2
() $22 1000 ,m-1
Q(P) oL
v} (2. 14b)

that is to say, according to hypothesis (2. 9), the force
is Newtonian for order zero and null for order one. On
the other hand, the following conditions are met for any

order up to ¢™* inclusively,
FOI_AiL®) (2. 15a)
F&R . Al ™) (2. 15b)
i L@
FeR—plL®w _ o aav. , (2. 15¢)

1
where the A} differential operators are defined as

;D ?
]
Al i D 7 - (2. 16)

Moreover, up to the above- mentioned ¢ order, the
limit condition (2. 10) is expressed in the following way:

rhfg L —teyy WV, (2.17a)
lim L® =0, (2. 17D)
r -0
LmL® =L e, vl (2.17¢)
by

(C) Next, let us establish a lemma that will prove
most useful in later sections.
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Lemma 1: The general solution of the differential
system

3
G,AlL =0 (sz €, —7)

50 (2.18)

that has the (2.7) dependence and satisfies the limit
condition lim, .., L =0, has the following structure,

8{(r) a(7)

L("’r S, 4, Ve y) = ?’ sq + —4— na(.\"a_ya') +f(‘}’, S, y):

(2.19)

B(r)=ra(r), alr), and f(r, s, v) being arbitrary functions,
such that

lim a(7) =lim+?8(») =lim f(r, s, v) = 0. (2.20)

r e 7 . 7 -w

Moreover, the general solution (2. 19) verifies

. naB M (B e ala+tBw 1 9
AaL'{ ErR y(?) S WM T Yy
LW lDaf}

7,8 il
7 ay {7_ s+2D - } U;a' ’
(2.21)
where 4 is the “reduced mass” of the system, i.e.,

__hun,
“‘M11+WI2 ' (222)
Pyoof: As long as function L is assumed to be depen-
dent on the variables (2.5), such a function is invariant
under space translation, and consequently the differen-
tial system (2. 18) is equivalent to the system A}G,L =0.
In fact

oL oL
G, al —
L=c <a\"’ 81*?)
d ? a*L
= L~D —=— G0}
ax¢ &5 FI Gk - axpore Ve
2
_AIG,L—e 2k _—aiG,L, (2.23)

€ —5—
P axfar? T

On the other hand, a simple calculation shows that this
system (4;G;L =0) is equivalent to the following one:

aL oL

e kg (2. 24a)
?’L 2'L 2L
" dvidg al’?a}’a = a/\,;}aya P (2. 24p)
82L 82L aZL
- +2D e, = 2.24
la §dg 0%y prrey ( c)
D oL 2w w7t oL T a?L N _, L
orfag ~ 7\ it o 0%y ) =" Gxtaq
(2.24d)

Taking into account (2.24a),
can be written as follows,

d oL 2L 3L
A\ 5 J=0, Mo =2 g
Ix§ vy dviogq axiov

Egs. (2.24b) and (2. 24c)

(2.25)

which, when developed, lead to the system:
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*L i

" T agayt T

3 oL 3 aL

i (a50)=0 & (+55)=0

*L _, 2 faL 3L *L 3 faL L

3sdq ~  du \dy, vy /)’ T agay  3s \dy, a3y, /)’
(2.26)

where u=+?, Equations (2.26) automatically imply that
function L must have the structure

L=g-A(u,s,v)+(vi—y2) Blu, s,¥) +C{v,v) + E(u, s, v),
(2.27)

where A, B, C, and E are functions subject only to the
verification of the conditions

9B 1 2A 9B 0A

du " 8as’ as v (2. 28)

From (2.27) and making the change of variables
f=vy -1V, 2=V +7vy, equations (2.24a) can be written

] C

0% o, » (aﬁ +B> nyy (2.29)
az al

Likewise, Eqs. (2.24d) lead to the system:

aC  acC _ Wy - Py

r ot =g(v), = my+ g’
2A W 24 B 2A
o4 _ 4% _T+2_vga +4 — (2.30)

ds ~ pu on “it 3s ou’

DaA 2W 9B 2W dg

M Mu Av  Hu dy’
where g(v) is an arbitrary function.

Next, let us show that condition lim, ..L =0 implies
that it is possible to assume C(v, v,) =0 without a loss
of generality. Indeed, since the said condition is as-
sumed to be valid for any value of the (s, g, v, v)
variables, the following limits exist according to (2.27),

HmA G, s, v)=4*(s, v), LimBu, s, v)=B*(s,v),

y -t r o

lim E(u, s, v) = E*(s, v), (2.31)

y =%

so that the following expression is verified,
q+A*(s, v+ (v = 1y) BX(s, 1) + Cw, v,) + E* (s, v) =0.
(2.32)

It is now clear that A* =0 and that functions B* and E*
cannot be dependent on variable s. Consequently, (2.32)
gives the following structure for C(y, v,),

Cly, v =~ (y1=3) B*(v) = E*(y) (2.33)
and thus (2.27) can be rewritten
L=q-Alu, s,v)+ (vy = v)[Blu, s, v) - B*(v)]
+E(u, s, v) - E*(v), (2.34)

i.e., a redefinition of functions B{u, s, v} and E(u, s, v)
is sufficient for C(y, v,) =0 to be assumed.

Summing up the previous results: Function L should
have the following structure,
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L:q-A(u,S,y)+(y1—y2)-B(u, s,y)+E(u,s,y),
(2.35)

where A, B, and E must satisfy the following equations
and limit conditions

0B 1 24 ob A

" 83s’ as "’ (2. 36)
DB =3A, (2.37)
3A AW 2A 2W 3B 24
p& _ W o4, e db 0
s Mu By Hu 3s tdar (2. 38)
PA  2W 2B
pitL_e% ob
v Hy Ay (2.39)
limA=1limB=1imE =0, (2. 40)

¥ - %o 7 e r =+

Obviously, (2.39) is identically verified as a conse-
quence of (2.36) and (2.37). On the other hand, taking
into consideration (2. 36), (2.37), and lim, ..V =0, it
can be concluded that (2. 38) is equivalent to

aB n 0A

Shy =4 (2.41)
From (2. 36) and (2.41), (2.37) turns out to be
equivalent to
A 7A

§ — = A

S 3 + 2y o (2.42)
whose general solution is

Y _ 4 AN
A=s5+Au, w), W= (2.43)

which when introduced in (2. 41) determines the follow-
ing structure for function B,

B=— YA, w) + Bl s), (2.44)

4
A and B being arbitrary functions.

Only equations (2. 36) remain for study, using results
(2.43) and (2. 44). To start with, we should note that
(2. 36b) leads to

A, w) = &) * Inw +¥(y),

Bly, ) =~ g(i(u) Ins + 6(u), (2.45)
where ®, ¥, and 0 are arbitrary functions, Then
(2. 36a) implies
¢ =0, \If:lbz(;), 5= [ @(») + ra(») |+ const, (2. 46)

where a(#) is an arbitrary function of » and a=da/dr.
By introducing these expressions in (2.43) and (2. 44)

A= %éz(r), B=}u(r) + const. (2.47)
By including the additive constant in a(») and accord-
ing to (2. 35),

B(») a(y)

= s — 2.48
L 72—' Q{]+ 4 ( )

(5'1 - ,\".!) +f(7z S, y)v

where functions a(r), 8(»)=ra(»), and f(r, s, v} must
satisfy the limit conditions deduced from (2. 40),
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lima(#) = 11m »2B(r) = hmf(r, s,y = (2. 49)

T -w

Thus the first part of the lemma has been proved.
Let us now prove equality (2.21). From (2.7):

BL 1L  10L ., 1 0L, ..
oxi ~ 7 v ' T 3 B Ve T3 gg Watlu),
oL 1<8L+n E) +28L aL ‘(2.50)
308 =2 \as T Taag ) Y2y Vas
and consequently, taking into account (2.13) and (2. 14a)
oL 1 oL oL 2W oL 12W oL o
Davg-{i”%*"«aq)- iZ oy M T Gy ( Yew

1 oL 7, 3oL oL oL .
= =2 se 2= yap 2 vl +2D 2= o)
+(2 s 2 oq 2 ay)” dy*° Ya
(2.51)
and remembering definition (2. 16},
19L 1 aL oL 2w aL
ip 2% _“p (&
Al {r or 2 (8s)+n ( ) w3y
A 2W L1
ng 7 2y Xaa
oL 3L\ 3L oL\
n (aq +2D ) Vg + (na 27 ~2D ay“) v, .
(2.52)

Nevertheless, according to (2. 48), one easily obtains

oLk
av° ™5

L (8) w1

o 2)- 3 8) e

+(v1—-v,) —E,z-- 'IWﬁ—(T_T)+ D= af

When these results are introduced in (2.51) they auto-
matically lead to the (2,21} equality. Q.E.D.

_ nB(r) s

2D =T F 5

3. APPROXIMATE LAGRANGIAN UP TO ORDER c~?

In this section, we assume that the dynamic system
(1. 1) is invariant under the whole Poincaré group, i.e.,
so that all the Egs. (1.2) are verified. We will then try
to find, up to the approximation order ¢, the most
general Lagrangian which is Aristotle invariant and
describes a dynamic system of the mentioned type for
the case of two particles. We will also impose the con-
dition that the interaction be separable and that there
be a Newtonian limit in the sense that was specified
in the previous section.

Let us consider Eqs. (1.2d) [in Ref. 8 it was shown
that these equations are the only ones that cannot be
deduced from (2.1) and (2. 2)] which state the invariance
of the dynamic system under the pure Lorentz trans-
formations. For the N=2 case:

1 ou}t
-G,-#,:z Ez {xau,, (11,':- — +

ax? [ k __agi)
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— Ry g+ 20,515 + véua} , (3.1

where R, is the first order linear differential operator

2
R, Evgm (3.2)

By introducing (2. 11) in Eqs. (3.1), for each order in

c‘l, the following is obtained:

G =0, GuP'=0, (3.32)
= Gy = Dy < BRI+ 20, 1
- au(s
-2 s
+ Ul’l“(ﬁ? ) + xaa'j ”SE"'_Z e %G';’F (n ” 1),
p=lyo004nad
s=0, ,n3
(3.3b)
where the D, operators are defined as
d 3J
Ve R 3.4
Dumva g tHa ™ 55 (3.4)

Equations (3.3a) are coherent with Eqs. (2.14a). On
the other hand, taking into account (2.14a), Egs. (3.3b)
are written (for the second and third orders) in the
following way,

=G F® = x . DFO + 9y FO 4 i P '(3.5a)

G,F»i=y, (8.5Db)

which, along with (2. 15a) and (2. 15b), imply for the
first and second orders of the Lagrangian, the following

equations:
_G].A:;L‘Z’:xm (3.6a)

(3. 6b)

+4D, ;0)i+2vajl 20” +vi1 i?),
iy (3) _
G;4,L% =0,

In addition, it is necessary to take into account the limit
conditions (2.17a) and (2. 17b).

Let us start with order ¢’2. Without difficulty, it can

be verified that the function

V
L(Z’ =t e%m, y: - —ygq + — €y, (3.m

4
is a particular solution of (3. 6a) and satisfies the limit
condition (2. 17a). Consequently, the general solution

we are looking for is
L@ _ L‘2)+L‘2> (3.8)

where L!? is the general solution of the homogeneous
system G,al L{ =0, which fulfills the condition
lim,,,eLka’:O. By applying Lemma 1 and taking into
account (3.7) and (3. 8), one obtains for the second
order,

2 w |4 B «a
L¢ )zéi"maua— 3,7 g+ Z(v%+z¢§) +7 sq+ Z(u%-—v%)

+flr, s, 0%),
where a(7), B(r)=ra{y), and A7, s, 122) must satisfy

(3.10)

(3.9)

lima =1lim»-%8 = limf=0.

r -® y = r -

Let us now consider order ¢
and Lemma 1, we obtain

=, From (3. 86b), (2.17D),
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0 Y
L(S)Z?S([‘f'Z(UE—U%)+g(y9s’l’2)7 (3.11)

where ¥(r), 8(r)=7»¥(»), and gl7, s, v*) must satisfy

limy=1lim»?6=limg=0. (3.12)

T T 7 e
In summing up, up to order ¢, the most general
Aristotle invariant Lagranigan having a Newtonian limit,
is separable and provides relativistic invariant trajec-
tories, is given by

1 w Vv B
=3€%mpt -V + = {%E“maz}f; -5z gt + Z(v% +od) + = sq

a 2 14606 Y
g i-ed) +f}+ & {;2Sf1+ g wi=d) +g} ,
(3.13)

where V(r), W) =rV(¥), a(r), B(r) =ra(r), f(r,s, v?),
y(7), 6(»)=#¥(r), and g(7, s, %) must satisfy the limit
conditions (2. 9a), (3.10), and (3. 12).

Let us remark that up to order ¢, Lagrangian

(3.13) coincides with the one we obtained in Ref. 8,
which by hypothesis was developed for much more
severe invariance conditions. In addition, one should
note that the “forces” deduced from Lagrangian (3. 13)
[by means of (2.15), (2.16) and (2.21)] have the same
structure as those which we worked out in Ref. 19.

4, THE STANDARD LAGRANGIANS UP TO ¢™2

Lagrangian (3. 13} cobtained in the previous section
contains (up to the ¢ order and as particular cases)
a whole series of Lagrangians worked out by different
authors in many different ways. In this section, we are
going to review all of them (note that they do not ever
surpass order ¢7) briefly indicating the different
frameworks used in order to obtain each of them and
their localization in the (3. 13) Lagrangian,

(A) Firstly, we should point out the Lagrangians
obtained (in one way or another) from the classical
field theory, i.e., the scalar field, vectorial field (in
particular, the electromagnetic field), and tensorial
field theories (gravitational field theory within the con-
text of general relativity), All these Lagrangians have
the (3. 13) structure, with the following expression for
functions a(#) and f(r, s, ©%),
a(r=z0, flr,s,v¥)=p-Vi- Zv(zz2 -1t + ;;V? st (4.1
where p and ! are constants which we will specify for
each case.

[A.1] Scalar field: When the interaction is described
by means of a scalar field, two different theories have
been worked out characterized by a single parameter
¥ that can take one or zero as values.?®?! For the case
of ¥=1, the best known Lagrangian is the Bopp
La.grangian22 whose original derivation is rather con-
fusing and corresponds to the following values of the

constants,
l = p = 0. (4. 2)

The Lagrangian obtained in Ref. 11 is contained in the
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Bopp Lagrangian, corresponding to a Yukawa potential,
i.e., the V{r) potential is of the Yukawa type,
exp(- M)

Vir)s-p ——— |

” (4.3)

k being the coupling constant and X the range parameter.
When y=0, we have found a Lagrangian only when the
particle masses are identical (s, = m,); this Lagrangian
is obtained by

l:O, P=— —=— (4.4)
Likewise, we have shown that if m, #m,, it is not possi-
ble to write a Lagrangian.

[A.2] Vectorial field: If the interaction is described
by a vectorial field, it is possible to point out the
Bagge Lagrangian, ® as being especially important. As
in the case of the Bopp Lagrangian, it was originally
worked out in a rather confusing manner. Now the con-
stant values are

:I} p:ov (4. 5)

The Darwin Lagrangian®* constitutes a particular case

of this, for it describes the electromagnetic interaction,

i.e., the V(r) potential is given by
€1€2

Vir)s ——=,

- (4.6)

where ¢, represent the electric charges of the particles.
It should be pointed out that the Darwin Lagrangian was
the first to be chronologically obtained.

[A.3] Tensorial field: The best known classical inter-
action described by a tensorial field is the one that
corresponds to the general relativity theory. Within
this context, one can place the Einstein, Infeld, and
Hoffmann Lagrangian®® which describes the gravitational
interaction and which corresponds to

Rl By

Loy oot

e v (4.7

=2, p=

G being the universal gravitational constant.

[A.4] By using the Einstein, Infeld, and Hoffmann
technique, it is possible to obtain a Lagrangian which
includes the gravitational and electromagnetic inter-
actions. This Lagrangian was developed by Bazanski’®
and is a particular case of (4.1),

/ 467}’117)72 - €109 172
T LGmymy < ey ’

o (2eyey = Gy Yomy + 1ty — miyel = iyl G
- ’

— .8
2(e e, — G myniy) (4.8

e ey — Ginym
V(’l’): 1¢2 = 1 2_

As was expected, the Einstein, Infeld, and Hoffmann
Lagrangian is obtained for ¢, =0.

[A.5] Finally, it should be pointed out that the
Stabrook Lagrangian®” is also contained in (4. 1). It
was obtained in order to describe the gravitational
interaction between two particles, starting from the
Brans—Dicke theory, in which a scalar and a tensorial
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field are mixed. This Lagrangian is determined as
follows:

2w+3 1z 1 _ MmNy
1:2[2w+4] T Vi) =-G—-2,

(4. 9)

where w is the so-called “Brans—Dicke parameter.”
Let us note that when w— =, the Einstein, Infeld, and
Hoffmann Lagrangian is obtained. Hereinafter, we will
call all the approximate Lagrangians of the subsection,
Lagrangians derived from the CFT.

(B) A second family of approximate Lagrangians up
to the ¢? order having the (3. 13) structure was de-
veloped by Kennedy. ¥ Its derivation is based essen-
tially on a certain symmetrization of Lagrangians
corresponding to a single particle. This family adopts
the following form:

V(»)=k&(#) (k: coupling constant),
k3
2r

P 4.10
a(»)=0, flr,s, By=ab Z(le “1Dlt+r s?, ( )
Let us point out that these Lagrangians cannot repro-
duce those of type (A) for which 0 #0, i.e., basically
those which are nonlinear as regards the coupling
constant.

(C) Another family of Lagrangians contained in (3. 13)
is the Mas' family, which is postulated “ad hoc” taking
into account certain symmetries, in order that it lead
to relativistic invariant trajectories. This family can
be written as follows,

a(r)=0, flr,s,v?)=pV*-AVi*+ B g s?, (4.11)
where A, B, and p are arbitrary constants. The dimen-
sions of p are the inverse of mass. It obviously in-
cludes Lagrangians of type (A) and (B).

{D} A fourth set of Lagrangians which are integrated
in (3. 13) was obtained by Woodcock and Havas. ' Its
construction is based on the existence of a Poincaré
invariant action (generalization of the Fokker action).
These Lagrangians are determined as follows,

flr, s, 08) =AW 0¥ + B(y) &2, (4.12)

where A(») and B(») are arbitrary functions of its
argument. It is clear that it includes some of the pre-
viously considered Lagrangians.

(E) Finally, we should mention the family of
Stachel—Havas Lagrangians.'® To obtain this family,
the Poincaré group must act as a canonical transforma-

tion group (in an approximate way) upon the phase space.

In addition, dimensional type requirements are im-
posed, as well as the necessity for the theory to have

a Newtonian limit. Actually, these authors do not de-
mand condition (1. 2d) because the remaining hypotheses
imply that such a condition is automatically fulfilled

up to order c?. This family of Lagrangians has the
following form,

hd 2
f(’V, s, 112 31;21-20 Al(»y')Bl(z), zEfs;)—-’ (4.13)

where 4, and B, are a set of arbitrary functions.
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The common feature that characterizes all the ap-
proximate Lagrangians of this section is that they pro-
vide relativistic invariant trajectories. Of these
Lagrangians, the most general which has been obtained
up to now, is the Stachel—Havas one [let us note that
if an additive term of type F{(#) is included in (4. 13),
it will contain all the remaining ones], which in turn
is a subclass of the (3.13) Lagrangian that we have
obtained. We must point out, however, that in Ref. 14,
a Hamiltonian whose corresponding Lagrangian is com-
pletely equivalent to (3, 39) already exists, before im-
posing the dimensional type requirements previously
mentioned [see Eq. {A17) of said reference].

On the other hand, it is worthwhile to underline the
possible asymmetry (particle 1 - particle 2) which can
be shown by means of the o (») function and/or the
flr, s, v®) one, as well as the level of arbitrariness
of the Lagrangian, due to the fact that these functions
do not depend in general upon the V{(») potential.

Finally, we will underscore the fact that (3. 13)
Lagrangian also includes some of the theories con-
tained in the so-called PPN formalism, which corre-
sponds to the interaction of two pointlike particles. It
is also interesting to note that the (3. 13) Lagrangian
contains the Pauri and Prosperi28 Lagrangian, which
is obtained by means of a variational principle.

5.c™* ORDER ANALYSIS

Let us once more assume the hypothesis established
in the third section, i.e,, let us suppose that the (1.1)
dynamic system is invariant under the Poincaré group,
that the interaction is separable and that a Newtonian
limit exists. We are now going to study the possibility
of finding, up to the ¢ approximation order, an
Aristotle invariant Lagrangian which describes such
a dynamic system for the case of two particles, i.e.,
the possibility of extending the Lagrangian (3.13) up
to the ¢ order.

Let us first consider the result of Ref. 19, according
to which the “forces” of this dynamic system are given
(up to the e approximation order) by the following
expression,

W 1w . 1wy
-?"aa' +’E2'{[;Z I|i+ é;(;z) T]aq(ZS—Tiaq)

w 1 1 1 -
- - - @)
37 @ V—myW+mliW)+alP* | xl,
w ; 1 . .
2) [¢] 3
+ (7 TNoq + by *) I’Y:m’} + ;.—3{(’(1 )*X;a' + bz: * Z';a’}

1 G i ; 1
+?{((’g,§4>+aa‘ ’*)x;a,+(£;4’+b§4’*)z*;a,}+0 =)

(6.1

where a{™*(r, s,y) and b{"* (v, s, v) are arbitrary func-
tions. ;z,f“ and g)‘f'“ are given in the mentioned reference

by the following formulas:

1 (w)"
(G 2 2
KR v <?) (s%+2¢° = 37,59) (v, = v0)
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WN/2V - W w
N ) et ne

a

da'?r*

X Vb Tas
N da (2y%
+2[(v1 = y2)* +20° (y1+v2)]—f§—

’

W W 1
+ —— - m*) - - :
o Tl (27 T + b gy Tad(2s ~ 7,)

e - LT

w Wy
X g (45t + g? _ _ __( ) _
q°(4s* +q° — 4n_sq) B \7 n,4(s = 1,9
1 dalt* W ( aa‘“*
_ = _ S%
2v Mg (25 = Teg) v T o 2m S r

+ 8s

o7
8(1(2)*> vt AN dal?*
Tle } L a

oy 4y s > T 2s ’

b(4)_7(3-—3na(1)(\’ - Y, )—Abtz)*(zv ~ )

(5.2a)

(2)x

b
+5€°(s + Mg) v, a“q

+ 5[y = v2)* + 208 (31 + )

wwH* 1 W\, w
v e\ q(Zs—naq)—Wn,,q

2V - W 3W l QW 9bHr*
2 2
X(vv 4 2 ) N4 Ué )*_,_,(1;(7.2 “)_aﬂ_q_

a My W g
4w pplEr 1 ap 2
“ a7 S Ty | T a2 =)

(5.2b)

On the other hand, taking into account the general
expression of L (up to the ¢ order) and those estab-
lished in (2. 15a), (2. 15b) for F®% and F®)*' one easily
obtains

<2>*:_773 2_&(3) * g W(a+B)
%= Zﬂ’l}v ¥ \#2 st 2m,
1of W o 1o
Y TR 2% (5. 3a)
b§2>*s_%z§s_zb a]; (5.3b)

al®* and b®* are obtained by substituting @ and 8 for
y and 6 in expressions a2”* and b**, respectively.

In addition, from (2.13), (3.9), (5.1), and (5.3), we
get
aL® : . .
@) 527 =Fxl + Gl +Z vk, (5.4)
where
Fo=z (mgy,+V+n,a)mlad - (m-1 B~ mlal)
v Bt (2,_ sOmzp P = mlp @) + 21,8 1)
mg 2 slm mgb g 79- sm; b,
o A A 3% 5, -1 (2)
+<48y+28_sz+438s8y (i’ a;™)
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2
of 2 3f> b a1, (2
+
( +2v 75 3y (€ms; ™), (5.5a)
2
G EL + + 1y (2) af af
3 {(may(l V+na)m:b! +2(7’2 —-—~asay+83 P
X (€Pm; a(z))+4(af Y 3 + g 3f)(€ m-1b(2>)}
oy os oy e
(5. 5b)
Z,=(s+1q) a (2)+2(1,72+ya—ya.)béz), (5.5¢)
with
W ., 1 /WY W [2V_W
(2) = [ _ (2 yx
a, ;zva+27<;z) n,q(2s nﬂq)+m( +ai*,
(5.6a)
b =Ty g+ 6% (5. 6b)

and (2. 15¢), we obtain

(g;;‘“ +0M* 1 G vl +Z 0k

From (5.1), (5.4),
alL®w :(gi‘“ +aP* +F)xl, +

(5.7
But L* depends only on (7, s, g, v,, ) and consequently
2 3L 1 [oDLW aDLm)l
A’ By =i ) - =
L Yaa {r ar 2 as e aq )
L(4) aL(&) DL(4) DL(4)
bt 2L L 2 g DL
9s oy oy oy
aL(fi))

(5. 8)

; yaL® aL®
", - -
~la | 3s ¢ 3q ay
Then (5.7) and (5. 8) lead to the following differential
system on L™:

aL® Loy 4 ) * 4) “Gyx N
T o :_g(g,a b = by = b* + G- Gy,
(5.9a)
aDL“) (4) (4)x (4> (4)%
M, 2 :-(gza +a, —gla, -+ F =~ Fu),
(5. 9b)
aDLY 4 .
T = - z2(h +b0* - g);‘}>-b;.>*+(,a_ca,+za),
(5. 9¢)
DL® aL®
aDLY 4 LW b @) L . drs
P (gz,, +a* + F,), (5.9¢e)
Let us remark that taking into account (5.9a), Eq.
(5. 9b) can be written
2w< 1 aL() L(4)>
A Ma ay® —m. aye
:aé4)+a;4’*—gl§?)—aﬁ’*+Fa—Fa.
- ‘5’)(5’54) +px_ g;;%) - b+ G -G, (5. 9p")

Two of the integrability conditions of this differential
system are
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[_aﬁ_a _ a; ] (a® +a®* - ﬁg)_a;p* L F,~F)
=1, ai(b“’+b“)* = bt = bi* + G~ Gpe)
+%“ aa Z,-2,), (5.10a)
4 _a; (p 24) +a(4)* Paé‘}) - aé?)* +Fa-Fa')
= _a_s_ (b + 0% = b~ bIP* + G, - Goo)
R ) (5. 10b)

These conditions, when developed, lead respectively
to the following partial differential equations over the
function f{#, s, v) {a function that was arbitrary at order
2 in the Lagrangian, with the exception of lim, ..f=0),

4s 9

(=5[] - 5 (5]

8w 2 [ [of
- B [ <8v)] 0, (5. 11a)
8 o ¥ W
y ardy  ast A (5. 11)

One can then easily verify that function f, given by
(4. 1) (this function includes the Lagrangian derived
from the CFT), does not satisfy conditions (5. 11a),
(5.11b). So we conclude that Lagrangians derived
from CFT cannot be extended to the ¢™* order.

We might then ask if there is some interaction that
could be represented by an approximate Lagrangian up
to ¢ order. The answer is given in Ref. 18 where the
most general approximate (up to c** order) Lagrangian
family, having a Newtonian limit, was obtained. This
family was worked out by imposing invariance under the
Poincaré group, which is obviously more restrictive
than the Aristotle group used in this paper.

In summing up, we believe that it is not possible to
extend the Lagrangians derived from the CFT (which are
the approximate Lagrangians, up to c order, that the
classical fields theory furnish) up to the ¢ order, in
order to get relativistic invariant trajectories.

In our opinion, this result somehow justifies some
authors’ attitudes when they follow a Hamiltonian ap-
proach in order to describe isolated systems, where
the position coordinates are not canonical, since the
Lagrangian formulation seems to be rather incompatible
with the minimal symmetry corresponding to systems
existing in nature.

APPENDIX

Let us consider the approximate (up to ¢~ order)
Lagrangian given by (3. 13), that can be briefly written

2
m 1 1
L=e 28 Vs S L)+ LDy, 0 +0(c?),

(A1)

where V(v), aly), v(#), f(r,s,v?), and glr, s, v%) are
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specific functions which satisfy the limit conditions

(2.9a), (3.10), and (3.12),
limV:IimV'lV:lima:limr'lfrzlimY
7 - r -0 7 - r -0 r .

=lim7'Y=limf=limg=0. (A2)

y -+ 7 - r -

Let L be another Lagrangian with the same structure
as L, i.e.,

-+ a n?avi = 1 Q)= 7 1 L(s’ — 0 _4)

L=c¢ ———-V+EgL (a,f)‘f‘zg (7,8 +0(c™H),

where V(»), @(»), ¥(»), F(r, s, Y, and g(r, s, %) are
specific functions which satisfy limit conditions similar
to those expressed in (A2).

By definition, L and L are said to be eguivalent if
they lead to the same dynamics. Taking into account
(5.1) and (5.3), L and L are equivalent if:

Ovder O
W=W= V-V=const

and taking into account the (A2) limit condition for V
and V, we conclude that V=1V,

Ovrdey 2

Taking into account the result corresponding to the
zero order

a®* =ap, (A3a)

pi* = p B (A3b)
Obviously, (A3b) is equivalent to

— — e

B=B= a=a=_const, D(%\f— - %) =0, (Ada)

and as in the zero order, we can conclude [from (A2)]
that @ = a,

Then (A3a) is equivalent to
d o\ 2 (d_ary, 4 (i
D(E’»s - 85) T (81* - 81') * wrt (ﬂy Ty

Order 3

(Adb)

Without difficulty, one can show that ¢ and ¢ must

satisfy equation (A4). In addition, ¥=7% must be
verified.

In summary, given a Lagrangian

2
L_o mzl 7 _LL(Z)(Q N+ -1§L‘3’( 7, 8) +0{c™),

the Lagrangian

2
a Maly -V

Z:
2

+ %L‘Z)(a,f# F)+ %Lm(y, g+ G)+0(c?)
leads to the same dynamics as the previous one (L), if
and only if F and G(r, s, v¥) are the general solution of

the differential system

oF
D= =
5 =0 (A5a)
E)F 2 oF  4W oF
o ol A
s 7 ov | Wt v’ (A5b)
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satisfying the limit condition |derived from (A2)]
limF=0.

]

(A5c)

Up to the moment, condition (2. 10) has been imposed
on the Lagrangian as the separability condition. Never-
theless, from now on, we are going to also assume the
following

L
rh~n-}= %\’- =0, (AB)
that in relation of f and g, is expressed as
. of .. 0og
,h.n.le o lim =2 0. (A7)

so therefore, the general solution to (A5) must also
verify

ar

}ij’f.lo 3\? =0, (A 8)
On the other hand, it is obvious that operator D
admits the following two first integrals
E=3ut + V), PF=p(?® - 4sh,
and consequently, from (A5a)
-g{ —R(E, D), (A9)

where R is an arbitrary function. Nevertheless, taking
into account the (A8) limit condition, we can conclude
that R =0, since

3F
0=lim -— =1lim R(E, 1),

y o a." —r Rl
i,e., F(r,s) does not depend on 2%.

Equation (A5b) can then be reduced to

2 F 1(;; v_v)azF 2 oF
¥ aras 2z \" "~ s’ T or’ (a10)

where the action of the D operator on variables » and
s has been taken into account. From (A10)

F =A{r)s + const.

The constant can be assumed to be zero by means of the
(A5¢) limit condition.
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In summing up,

d
F:A(’V) §= Ei B(’V),
i.e., the Lagrangian, up to ¢ order, is unigue with
the exception of the above-mentioned total derivative.
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Group theory of the interacting Boson model of the
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O. Castanos, E. Chacon, A. Frank, and M. Moshinsky®
Instituto de Fisica, Universidad Nacional Auténoma de México, Apdo. Postal 20-364, México 20, D. F.

(Received 5 April 1978)

Recently Arima and Iachello proposed an interacting boson model of the nucleus involving six bosons, five
in a d and one in an s state. The most general interaction in this model can then be expressed in terms of
Casimir operators of the following chains of subgroups of the fundamental group U(6):

UG)DUS)D0(5)20(3)D0(2),
UG)D06)D20(5) D031 D 0(2),
U6 DSUDO3) D 0(2).

To determine the matrix elements of this interaction in, for example, a basis characterized by the
irreducible representations of the first chain of groups, then we only need to evaluate the matrix elements
of the Casimir operators of O(6) and SU(3) in this basis as the others are already diagonal in it. Using
results of a previous publication for the basis associated with U(5)>0(5)>0(3), we obtain the matrix
elements of the Casimir operators of O(6) and SU(3). Furthermore, we obtain explicitly the
transformation brackets between states characterized by irreducible representations of the first two chains
of groups. Numerical programs are being developed for these matrix elements from the relevant reduced
3j symbols for the O(5) 2 O(3) chain of groups that were programmed previously.

1. INTRODUCTION

In recent work!™ we gave an explicit and complete
determination of the states characterized by irreducible
representations of the U(5)> O(5) 2 O(3) chain of groups.
The matrix elements involving these states were also
obtained in terms of reduced 3j symbols in the
O(5) 2 O(3) chain of groups. These results were im-
portant in developing the group theory behind the collec~
tive model of the nucleus introduced by Bohr and
Mottelson, % as well as for the work on transitional
nuclei of Greiner and his collaborators.®

Simultaneously to the above papers Arima and
Tachello® became interested in the U(5) 2 O(5) = O(3)
chain in relation with an interacting boson model that
they applied to problems of nuclear structure. Later
they extended this model’ by considering the above chain
as a subgroup of U(6) when to the d-boson creation
operators 7, (m=2,1,0, -1, - 2) they added an s opera-
tor 7. The states for the chain

u(B) > u(5) = 0(5) -> O(3) (1.1

can be obtained by a trivial extension of those mentioned
in the previous paragraph and thus explicit calculations
in the interacting boson model can be carried out with
the help of the reduced 3j symbols mentioned above.

In subsequent development of their work Arima and
Iachello® became interested in other subgroups of the
U(6) group, specifically

U(B) = O(8) => O(5) > O(3) (1.2}

and
U(6) 77 8U(3) = O(3), (1.3)

and in the states associated with them. Obviously the
latter can be developed in terms of those characterized
by the chain (1.1) if we can determine the appropriate
transformation brackets that take us from them to the
states characterized by the chains (1,2) or (1. 3),

¥Member of the Instituto Nacional de Energia Nuclear and
El Colegio Nacional,
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The object of this paper is twofold. The first one is
to give explicitly the transformation brackets relating
states of the chain (1. 1) and (1.2) and to determine the
matrix of the Casimir operator of SU(3) in the basis
(1.1), whose diagonalization provides the transforma-
tion brackets between the chain (1.1) and (1. 3). The
second is to show that the most general interaction in
a model containing d and s bosons, can be expressed
in terms of the Casimir operators of the groups in the
chains {1.1), (1.2), and (1.3), Thus, if we take, for
example, states characterized by the irreducible rep-
resentations of the chain (1.1) and obtain explicitly
the matrix elements with respect to these states of the
Casimir operators of O(6) and SU(3), we have also the
matrix elements of an arbitrary Hamiltonian in the in-
teracting boson model. Thus one can say that the
objective of this paper is to develop the group theory
of the interacting boson model.

The present analysis is of interest for other problems
besides those appearing in the work of Arima and
Iachello. For example, in a microscopic theory of
collective motions developed by Vanagas, ° the chains
(1.1), (1.2), and (1.3) appear and thus the transforma-
tion brackets mentioned above would also be useful,

In the next section we proceed to derive the genera-
tors and Casimir operators of the groups in our dif-
ferent chains in terms of creation and annihilation
operators associated with @ and s states. In Sec. 3 we
briefly summarize the results developed for the
chain U(5) 2 0(5) > O{3) and then generalize them when
we consider the chain as a subgroup of U(6). In Sec.

4 we discuss the chain (1. 2) and specifically the matrix
elements of the Casimir operator of O(8), in the basis
characterized by the chain (1. 1), to obtain finally the
transformation brackets relating this basis with the one
characterized by the chain (1.2). In Sec. 5 we turn our
attention to the Casimir operator of SU(3) and its matrix
elements in the basis characterized by the chain (1. 1).
Finally, in the concluding section, we indicate how the
most general interaction involving d and s bosons can
be expressed in terms of the Casimir operators of the
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groups in the chains (1. 1), (1.2), and (1. 3) and briefly
discuss the programs being developed for determining
the matrix elements of this interaction in the basis
(1.1).

2. GENERATORS AND CASIMIR OPERATORS FOR
THE RELEVANT GROUPS

We shall start by giving the notation required in our
discussion. As the U(5) group is related with d-states'
we associated with it the coordinates

a m=2,1,0,-1,-2, a"=(-)"a_,, (2.1a)

ms

which correspond to a Racah tensor for / =2. When we
extend the problem to U(8) we need an extra coordinate
associated with an s state which we designate by

a (2. 1b)
It will be useful on occasions to denote these coordi-
nates by a single symbol

Oy 1=0,2, (2.2)

and we shall use either the notation (2. 1) or (2.2) de-
pending on which proves more convenient.

Ay =0y, Q=0

The momenta associated with these coordinates will
be designated by

1 2

Trlm:[- Saim ?

1=0,2, (2.3)

and the corresponding creation and annihilation opera-
tors are defined by

n,m:;;zj(a,m-iﬂ,m), ﬁ”":%—i (al™ + '™, (2.4)
where
(&' =800 (2.5)
Again we shall use, when convenient, the notation
Ty =T T00=Ty =Ty Moo =T Ean=Emy  Ego= L.
(2.6)

We can now ask about the generators of the group
U(6) and its subgroups. The former are'’

_ll:nmlznlm Ellm,, ]’1120, 2, (27)

of which we have 36 and whose commutation relation'’
is from (2.5) given by

[ 'm*

bt U =Ch o1 8 = Chima 8, O (2.8)

1" m" 1~ 1Im
The generators of the subgroup U(5) of U(6) are
obviously

I =, g (2.9)
where we used the notation (2. 6).

As is well known!'>'*® the generators of the O(6) group
will be given by the antisymmetric part of (2.7), i.e.,

Alm,l'm'Enlmgl’m"_nl'm' ilm? (zo 10)
of which we have fifteen, and ten of these,
Do 2wt = M bme = Tt s (2.11)

are also the generator of O(5).
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In turn, as discussed in Refs. 1 and 10 the generators
of O(3) are given by

L, =8 X (21m7|2m’) 7, £"

=VB7Z 2y (22mm’ [1T) (N, & — M0 k,), T=1,0,-1,

(2.12)

which shows that this group is not only a subgroup of
U(5) but also of O(5).

There remains the determination of the generators
of the group SU(3) in the chain (1.3). The procedure
of determining them from the generators of U(6) was
extensively discussed many years agom'“'12 in the
pioneering works on SU(3) in the shell model for the
25s—1d shell. From these works we see that besides
L, the generators of SU(3) include a Racah tensor of
order 2 defined by
Q,=-v8r1/15 2, 2, @U'm’ IVZYZ,"(G, @) lZl”m") Mo e £

*'m’ 1"m”
=VT/3 [nx< EF, +V4/3 (&, + 0,8, m=2,1,0,-1,-2,

(2.13)

where the kets |2/m) are harmonic oscillator states™
of two quanta with the angular momentum and projec-
tion indicated. In the right-hand side of (2. 13) we used
the notation (2. 6) and the bracket expression

[nx gR = E" Q2" " L 2m) My £, (2.14)

m'm
together with the explicit form of the matrix element of
%Y, (6, ) with respect to the states |20m),

Having obtained the generators of all the groups in
the chains (1.1), (1,2), and (1.3) we are now in a posi-
tion to determine explicitly their Casimir operators.
The first order ones for U(6) and U(5) are obviously

N=23m, ™ 1=0,2 (2.153)
Itm
N= ?;,nmé'", (2. 15b)

i.e., the corresponding number operators which com-
mute respectively with all the generators (2.7) and
(2.9). As we shall only be interested in the single row,
i.e., symmetric representations of U(6), we need only
the first order Casimir operators of the unitary groups.

The Casimir operator of the O(5) group, as discussed
in Ref. 1, is given by

A =3 70 Aygpg, AT

mm?*

AN+ - (; nm.nm'> (Zﬁ; g,,,&'"), 2. 16)

and with its help we can write the Casimir operator of
the O(6) group as

[*=500 23 i,y me ArTmtm

Im I'm'

=A*+ K%, (2.17)
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where

© =A@+ + (W + 97 - (2 B

- @ Ems’"> 72, (2.18)

We shall make extensive use of these expressions when
discussing the states in the U(8) 2 0O(6) 2 O(5) © O(3) chain
of groups.

The Casimir operator of O{3) is of course
L? :Z; (- L.L,,

T

(2.19)
and with its help as well as with that of the operator

2
Q*= 2 (-)7QuQum, (2.20)
the second order Casimir operator G of U(3) takes the
form

C=@*+5L + 4 K7 (2.21)
as shown in Eq. (6. 39) of Ref. 10, Clearly then for
eigenstates of the chain U(6) 2 U(5) > O(5) © O(3) in which
N and L? are diagonal it will be enough to find the
matrix of @ in this basis and diagonalize it to get the
eigenstates of G, which up to the ambiguities discussed
at the end of Sec. 5 are characterized by irreducible
representations of SU(3).

Having determined all relevant Casimir operators,
we turn our attention to the basis associated with the
(1.1) chain of groups.

3. THE CHAIN U(6} O U(5) D 0(5) D 0(3)

We start by briefly reviewing the states characterized
by the irreducible representations of the U(5) = O(5)
2 0(3) chain of groups that were discussed in Refs. 1
and 2, These states can be denoted by the kets
|vAsLM) that are eigenkets of the following operators:

N |vrs LMY =v |vrs LMD, (3.1a)
A2 UAsLM) = M\ + 3) | vAsLM), (3. 1b)
L2|vAsLMy = L(L + 1) |vAsLM), (3.1¢)
Ly | vAsLM) = M|vAsLM). (3.14)

There may be d(A, L) independent representations'™
L of O(3) contained in a given representation X of O(5)
and we introduce the index

s=1,2,...,d L), (3.2)

to distinguish them.

To obtain the explicit expression of these eigenstates
it is convenient to go from the coordinates @,, asso-
ciated with quadrupole vibrations, '+ to those in a
system fixed in the body that are related to them by

a, = Z D%,(9,) ay., (3.3a)
where
@ =a,=(1/Y2)Bsiny, asj=a_1=0, ay=Bcosy,
(3.3b)
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and D%, ,(9,) are Wigner functions of the Euler angles. 14
In terms of the coordinates

B, v, 91, 9, 9, (3.4)
the eigenstates (3. 1) take the form

lvAsLMy = F}(8) X'z u(, 9,), (3.5)

Xsrul,0:) =11 2712 00 6% () DI (). (3.6)

In (3.5) j=(v~2)/2 and

: 1/2
F}(B):[ﬁfﬂ—iﬂ] BLY 2B exp(-£2/2),  (3.7)

with L’}‘S/Z being Laguerre polynomials. 5 The Xerulr,9,)
play the same role for the O(5)=> 0(3) 2 O(2) chain of
groups as the spherical harmonics Y, (8, ¢) for O(3)
20(2). They are given in (3., 6) in terms of a Wigner
function' of the Euler angles and a function d)}“‘(?)
whose explicit expression appears in formulas (3. 24)
and (7.2) of Ref. 2. The index { is a nonnegative integer
restricted by the inequalities

A=L<3u<x—(L/2) if L is even, (3. 8a)
L
Ao L<3p<Ao <_—;3) if L is odd. (3. 8b)

For a fixed A, L the relations (3. 8) indicate that if there
are values of u that satisfy them they will take all
integer values between a minimum one K, and a maxi-
mum one > j4y. The index s appearing in the ket (3.1)
and the angular function (3, 6) is then defined as®

S=4—~ g+, (3.9

and it takes the values (3.2) where d(X, L) = B¢ = py+ 1.

It is important to note that the angular functions
(3. 6) while complete are not orthonormal, as the index
s is not associated with the eigenvalue of an Hermitian
operator. However, we can deal with matrix elements
involving the Xz 4(¥, 9;) either by introducing their
dual® or by orthonormalization of the basis by the usual
procedures.

So far we have the basis for the

Uis)DoA(s)DO(L3)33(42) (3,10

chain of groups where underneath each one of them we
have indicated the index that characterizes its irreduci-
ble representation. To include this chain as a subgroup
of U(6) we write the Casimir operator (2. 15a) of the
latter group as

N=/ +7E. (3.11)
The eigenstates of the number operator 712, i.e.,
TEa |n) =n(a |n) (3.12)

are obviously the wavefunctions of a one-dimensional
harmonic oscillator. Thus if we define

(a,, @|nvrsLM)y =(a,, |vAsLM)(@ |n), (3.13)
it is an eigenstate of (3.1) and of
N|nvxsLMy =N |nvAsLM), (3.14)
where N=n+v,
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We have obtained a complete, though nonorthonormal,
set of states characterized by the irreducible repre-
sentations of the chain of groups in (1.1). In the next
sections we proceed to determine the states charac-
terized by the chains (1.2) and (1. 3) in terms of the
kets (3.13).

4. THE CHAIN U(6) D 0(6) D O(5) D 0(3)

The states (3. 13) are characterized by the irreducible
representations of all the groups in the chain indicated
in the title except for O(6). Thus if we calculate the
matrix of the Casimir operator (2. 17) of O(6) in the
basis (3. 13) we can, from its diagonalization, get linear
combinations of these states characterized by the irre-
ducible representation of O(6). We shall first carry out
the calculation of this matrix and later give a closed
formula for the transformation brackets between eigen-
states in the chain (1.1) and (1.2).

We start by noting that from (2. 16), (2.17), and

(2.18) we have that
=N +4) - (Z) Na™ +?;2) <Z) EnE" + EZ> (4.1)
Thus the eigenstates satisfyingl'2

Ry =pu, (2 sm£m+z2> ¥ (4.22)

are automatically eigenstates of [? with eigenvalues

plp+4), i.e.,
[*¥=p(p+4)¥, p nonnegative integer, (4. 2v)

We now apply [ ? to the basis (3.13) and get from
(2.17), (2.18), and (3.1) that

L2 | moasLMy =[x(A + 3) + k2] |awAs LMy .

We note from the definition (2. 18) of K? that this opera-
tor is an 1nvariant of 0(5 and thus will not affect the
angular part X,r4(7,9;) appearing in the state (3. 13).

(4. 3)

From the definitions (2.4) we see that K° takes the
form

_ATE+ 1)+ (N 5) 7E (32-5 5%-/0_5) T

2 9 _ ‘)—2
- <B +Bag =N )T (4.4)
where
B=7 a,a™ B :—B =iy, a,m", (4.5a)
A=+ -3,
(4.5b)

a A’
2 m_ 4
™= o T = ( 3% E"') '
Furthermore we have for the one dimensional-oscillator
(alny of (3.12) the following relations,
Alny=vn+ijn+1), Elny=vVuln-1),

while for F}(8) of (3.7) we obtain from the properties
of Laguerre polynomlals that

(4.6)

(62+ﬁ ;-6) FMNB) = (0+2) FNB) = 2Vi0 T T D Flad),

(4. 7a)

38 J. Math. Phys., Vol. 20, No. 1, January 1879

(#-85) F1BI=0+2+97}(6)

=2+ DO+ +5/2) 2 F(B).
(4, 7b)

Remembering now that j=(v-2)/2, n+v=n+2j+1=N,

we can denote the states (3.13) as
IN—2i=» 2j+ 22, s, L, M), (4.8)

and the application of the operator L% to them leads

from (4.3)—(4.7) to the relations

;—2 lN— 27" )\, 2}+ )\x )\SLM>

(4.9

where A}} has the selection rule j*=j+ 1,7 and
AT =[(2j + V(@N =22 = 4j + 1) + 5(N = A= 2/) ]+ A2 + 3)

(4.10a)
AN =2l = 2= 2)(N=2=2j = D+ D2+ j +5/2)] /2

(4. 10b)
AP =2[(No a2+ DIV = A= 2 +2)j(0+j+ 3/

(4. 10¢)

Thus the orthogonal matrix that diagonalizes Il A} 1,
0<j,j <(N<=2A)/2, leads to the transformation
brackets between the states characterized by the chains
(1.1) and (1.2). The eigenvalues of the matrix || A}}. ]
must be of the form p{p + 4) with A< p <N,

We now turn to the problem of obtaining in closed
form the transformation brackets mentioned in the pre-
vious paragraph. This implies the explicit determination
of the states characterized by irreducible representa-
tions of the chain of groups (1.2). To find these states
rather than use the coordinates

a, B, ¥ 91, 9, 9 (4.11)
of Sec. 3, we consider new ones

b, 8, ¥ 93 9y Iy (4.12)
where

‘w=bcosd, B=>bsind. (4.13)

In terms of the variables (4. 12) we see that the num-
ber operator N of (2.15a), which is associated with an
harmonic oscillator of six dimensions, takes the form

‘* 1 19 S 2
N= 5(_babb81)+7L +I))—3,

while the Casimir operator /% of O(6) takes from (2. 4),
(2.17), (4.5), and (4.13), the form

(4.14)

92 3 1
2_ a2 _g? _ 4 A% @2
L—Aﬁﬁf(BaBBaBE’>
3 2 A
+<Ba6+5>“'5?7+6a;3< aa“)
2
:_%—4c0t6§8+s—h—112—5A2 (4. 15)

Clearly an eigenstate of the operators N, [, A%,

L?, L, can then be written in the form

s
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By f7(5) g(8) Xz (¥, 94), (4.16)

where X3 (¥, 9,) is given by (3.6), By, is a normaliza-
tion coefficient while g/(0) satisfies the equation

A(X+3)

( :; — 4 cotd d6+—ﬁzé_> 22(8) =plp + 4) g (8),

|NoAsLM) =

(4.17)

and f7(b) in turn is determined by the eguation
1 ( 1d bs qa
2 B db " db

(N-p)/2.

From (4.17) we see that, up to a constant factor,
g2(6) is given by®®

27 (0) = (sind)* C}*2(cosd),

N 9%;‘2 + b2> - 3] 75(b) =Nf2(b)
(4.18)

where J =

(4.19)

where C is a Gegenbauer polynomial'® of the indices

indicated. ' In turn, from (4.18) we obtain

F2b) =b°LEE(B?) exp(- b2/2), (4.20)

where L is a Laguerre polynomial, '°

The normalization coefficient By,, appearing in (4. 16)
is discussed in Appendix A, and then in Appendix B we
expand the states (4. 186) in terms of the states (3. 13).
Clearly the transformation brackets do not depend on
the indices sLM as both chains have the groups
0O(5) 2 0(3) 2 0(2) in common and thus we can denote
them as

(nvX|NpX)
P+ Dl(p+2)!
_ (_) (Naptvar) /2 [ ZN-o((N + p)/2 + 2)!(p _

T+ 21+ (Vv =-p)/2)N ]m
o+ N2+ DI{(v =N/

5 W =02+ D)0~ p)/2) (- p + 1)/2),
s sI{N=p-v+X/2+s)(-p=-1), ’
(4.21)
where n=N-v and (a), is the Pochhamer symbol, ¥*
(@s=ala+1) e {a+s-1).

The explicit form of the transformation brackets
relating the chains (1.1) and (1.2) is then available.

5. THE CHAIN U(6) 2 SU(3) > 0(3) 2 0(2)

As indicated at the end of Sec. 2, to obtain the states
characterized by the irreducible representations of the
chain of groups appearing in the title of this section,
we require only the diagonalization of the matrix of
the operator @* defined by (2.20). For this in turn we
need the matrix in the basis (3. 13) of the operator @
of (2.13) which, from (2.2), (2.6), can also be written
as

Qu = W{[aXQ]2M+

M=2,1,0,-1,-2.

(mx 7]} + V373 (@ + myT),

(5.1

We note though that the states (3.13) are not ortho-
normal and thus matrix elements of Q=3 ,(-)¥Q,Q_4
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with respect to them cannot be obtained by introducing
an intermediate state of this type between @, and @_,
and summing on the relevant quantum numbers. Rather
we proceed to introduce an orthonormalized basis by
first considering the scalar product of functions (3. 6),
i.e.,

szLM(V, ) Xsgoye (v, 99 AT
= ByneOp g Oy e 22717221 + 1)
X ("2 ¢%E () ¢x*"F (v) sin3y dy
(3

= Bune O 10 Oye Mg (A, L), (5.2)
where
dT =sindy sind, dyd9;dd, d9,, 0<3,, v<m, 0<39,9,<2m7,
(5.3)

and the s and u are related as in (3. 9). The matrix

| Mge (X, L)l =M(N, L), for which a program is avail-
able'® is then real and symmetric and thus there exists
an orthogonal matrix (J(A, L) = [I() ¢ (*, L)|| such that

OMQO =4a=lg(r L)5,,.I, (5.4)
where ~ indicates transposed and 4 is a diagonal
matrix whose eigenvalues €(, L), 1=1,2,...,d() L),

are all real and positive. We now define

a,L)

Xt)fr,M(V, )= SZI [E;(A, L)]'l/z()st()\, L) X (v, 9),(5.5)

(5. 4) that
thLM Y Sz)XrL'M'(YaS ) AT =030, 61 Oyyye

An orthonormal basis that we can use instead of (3.13)
may be defined as

(@, @|nvNLM) =(@|n)(a,, |vMLM)
=(a|n) F}(8) Xiy u(7, 9)), (5.7

where (@|n) is the one-dimensional harmonic oscilla-
tor state of (3.12) while F;(8) with j=(v — 1)/2 is given
by (3.7). We denote this basis by a round bracket
rather than the angular one of (3. 13).

and it is obvious from (5. 2),

(5.6)

It is also convenient to define Wigner coefficients® of
0(5) 2 0(3) chain of groups in terms of the orthonormal-
ized X}z (v, 9;) of (5.6) instead of ., ,(¥,9;) of (3.6).
Thus we write

[)\tLM A'Z'L’M'i)\"/"L”M"]
= fX);ZZ XL Xty i dT
— 2 [E,"(A”,L”) Et.()\’,L')Et(A,L)]'I/z

S5t s”
xOs"g"(A”’ L”)Os't'(}\'; L,)Ost(xy L)

X 23/4 2(6-X-7l'-)~")/2<LM, L'M lL”M”>

X(ZL" + 1)-1/2(_)L¢L'¢L "(7\811, )\/SILI’ )\”S”L”),

(5.8)
where
()\SL, A's'L” A”SI’LII)
_ T L L' L” lu-L o
"0 ik (K K K") (M o # ' E ()
X ¢A'ruuL "(7) sin3y dy, (5. 9)
Castanos et a. 39



and the parenthesis on the right-hand side of (5. 9) in-
dicates an ordinary 3j symbol of the O(3) group, while
the relation between ¢ and s indices is specified in
(3.9).

We now proceed to calculate the matrix elements of
@y of (5. 1) with respect to the states (5.7). To begin
with we make use of a simple result due to Hess' to
write the matrix elements of polynomials in the momen-
tum operators 7, T in terms of the corresponding
polynomials in the coordinate operators «,, «. For
this we note that if

Hy=% <Z)11 " +Ea 01'”) (5. 10a)

H=L (R + % {5.10b}
then from (2. 3)

Ty =t(Hyoy — ay Hy), (5.11a)

T=i(Hya - aH,), (5.11b)

and thus taking into account that the states (5.7) are
eigenstates of H,, H, with eigenvalues (v +3), (n+3),
respectively, one obtains'
(n”V" NALE 2D id I ﬂMﬁ I n'v’ )\JIUL;M/)
== -V v | )
X(V”)\”t”L"]W"' GM‘V, )\I[/LIA/II) (5. 12&)
(nIIVII N LA l [Tr X ﬂ']zM |nivl N LM
— (__)(vn_v’ y/2 6"“"' (V" N LT MY lla x a]ZM l v }\ItILIMI)’
(5.12b)
where the last result was obtained by writing [7X 7%,
explicitly and using (5. 11a) twice.

When returning to determination of the matrix ele-
ment of @, of (5.1) with respect to the states (5.7) we
recall that as this operator is the linear combination
(2.13) of generators of U(6), the matrix element must
have the selection rule »’ + v/ =" + v” =N. Thus we can
finally write

(nll v )\IIIIILIIMII IQM \nf V’ )\'l”L’M’)
VT3 8,0y Bene (W W L7 M7 |[aX @Ry |0/ N 17 L M)

+2V4/3 8o omr " ! Ia |n’>(v"?\" LM ‘ o, l VNP LMY,

(5.13)
In furn we now write®

Oy :6xi2M(7’ Si):clﬁ){h”()’, 31-), (5. 14&)

=(1/3V7) 2,8 X%, 4(7, 9),
(5. 14b)

lax alt = (1/3V7) Bxdau(y, 9;) 9) =

where
= (47/VT15), =4m(6/5)"?,

and in (5. 13) we then have to evaluate matrix elements
of the form

(V”)\"t" L"M” ]le’izu(y’ 'S{) lVI AIZ?L}MI)
:{7\" v ‘ A l )\IVI}[)\IZM’ NPLIM! ‘ A t"L”M"],

(5. 14¢)

(5.15)

where A=1, 2, the curly bracket
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o |3 vory= JCFia(B) B FYL(B) Bt ap (5.16)

is given explicitly in Eq. (1.18) of Ref. 2 and the last
term is the Wigner coefficient (5. 8).

We now wish to obtain explicitly the matrix elements
of €% in the basis (5.7), i.e.,

(n”l)")\"[”L"M" ‘QZ 1nlvl NEL'M)
= 2 2 2 (=)

PRI WU By AU I
X (71” V” )\nlllLll M" ‘ Q \nm pt ["’L"'M’" )
ln’v’h’t'L’M'),

X ( AT /!IILI!IMI" ’Q (5. 17)

These matrix elements clearly contain factors of the
form

2L

M tempenym
X [7\12 - M MNP LIM l?\"'f’”L”’M”']

23 & C-1C-1§L DAL 6M e Z; E E

s7s? grgw Lo
x[e, (A LYY €,u(W | LM)T2
X0 sog (N, LY gugw(X', L") MgLs g (A7, L) 282
x 2O AR 2 (91 4 1)(2L" + 1)]L/2
X (\12, M s L M g L) (R12, N s L', A7 7 L")
(5.18)

(- )M[ XI2M, A gt Lw | A LIIMH]

S(NPL [ XRN [N LT LYY By 0y o Oygoigos

where for the reduction indicated we made use of the
orthonormality properties of the ordinary Wigner coef-
ficients appearing in (5. 8) and of the fact that from
(5.4) we have

5O g n X7 L)€V, L)) Oy 5n (W, L)
et
= Mg (X7 L), (5.19)

where M =||M2 ;. (A7, L™} is the reciprocal of the
matrix M whose elements are defined by (5.2). The in-
dices A, X are restricted to the values 1,2,

We can now write the matrix element of @’ as
(nlr VNPT LM iQZ ‘n)V' N LM
3o b 2 0 20 (200

XOEL| 220 [N LY + (4V77/3) 0103800y nwapm
XZ{N”V”12 l M V/r}{)\l v l 1 1 )\myu} RULE? lzlhm l)\l L)
A

X(””la\n’> +(4r/3 CICZ nrept ntap
XE{)\’"V |11>\uymr{)\;y;|21)\m r}()‘p/ﬂL llz}\ml)\ i'L)

A

X(n”la\n’)—% &C% " wln“w"z{z {)\"’y”’ |1|>\nvn}

X{NVI l 1'7\"'11'”}’ <nnl o ‘nn +un )y ' + v~ ™" ‘ o ‘Vl’>]
XML l 11a l Xy L>},
(5.20)

where c;, ¢ are given by (5. 14¢), {»v” [ X[ X'} for
x=1, 2 is given in (1. 18) of Ref. 2 and

._ 741\ 172 172
<7’l”\ o in’> = (n 2+ > 5n",rv'd + (g) 67!",71'-1 . (5‘ 21)
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The factor (A"/”L{XX\" | X['L’} is defined by (5. 18) in
terms of the reduced 3j symbols (5.9), already pro-
grammed'® for A=1,2, and the matrices J(}, L)

= “0“()‘, L)“, A()&, L) = “ €t(>\’ L) 6”' ” required in the
orthonormal basis.

We have thus obtained explicitly the matrix elements
of @% in the basis {5.7) and in the next section we indi-
cate some of their applications and the available pro-
grams for determining them numerically.

Finally we wish to discuss how far a definite eigen-
value of @° fixes the irreducible representation of the
group SU(3), For this purpose we recall that a repre-
sentation of U(3) can be characterized by a partition
[rahohs], hy = hy > hy > 0. The number operator in U(3)
is given by'®

ST @rm | Hy- 220" m?y ny, £ = 2N,

&
(5.22)

where /4, is the Hamiltonian of a three-dimensional
oscillator, and thus the matrix elements are
28,2740 ps . Thus the partition characterizing the
irreducible representation of U(3) is restricted by

the relation
By +hy + hy = 2N, (5.22a)

Furthermore the second order Casimir operator G
of U(3) given in (2.21) has eigenvalues g of the form!’

(5.23)

Thus if we designate by q2 an eigenvalue of @* we obtain
from (2.21) and (5.23) that

g=ht +h 1} + 20y ~ 20,

G =0+ I+ 5+ 20y — 2k~ 5 L(L+1) - $N* . (5.22D)
Clearly then if N, ¢°, L are specified we have two equa-
tions for the three unknowns %y, /5, ;. We note though
that /1y, 7y, hy are integers satisfying the inequalitites
Iy > hy = hy> 0 and thus the possibility of several solu-
tions of the equations (5. 22) is severely limited. This
limitation is enhanced when we take into account that
[Ryhyhy) is a representation of U(3) contained in the
representation N of U(6). Discussions by several
authors®™!® then indicate that [71/355] take the form

By =2(N = x=2y), (5.24)
where x and v are integers satisfying the inequalities

0=x<[N/2], 0=y=[(N=-2x)/3] (5.25)

hy =2y, Iy=2(x+ V),

with [ ] meaning the integer closest from below to the
number inside the bracket.

Even with the above limitations Eq. {(5.22b) may be
solved by more than one pair of x,4. To see this we
first rewrite the Eq. (5.22b) using (5.22a) as

¢ =3p +p+ A +20r+p) - SLL + 1), (5.26)
where
thi_hzzz(N_zx_:gy)’ rEhz_hszzx, (5.27)

and thus (p, 7) characterizes an irreducible representa-
tion in the fashion of Elliott!! who uses the notation
(%, &), which we avoid, as these letters have another
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meaning in the present paper. Clearly (5.26) remains
invariant if we interchange p and », and thus for N
divisible by 3 we can consider the conjugate partitions

==
h | 75 1'
hy L 2|
. ———— (5.28)
s |
— (4N/3) —~

for which
p=h~hy=h-hj=v', v=hy-hy=hi-hj=p',
(5.29)
and so they correspond to the same ¢°.

For N divisible by 3 the two irreducible representa-
tions of U(3) given by

[2N ~ 2x — 4y, 2x + 2v, 2v],
[.;.N -2y, $N - 2x ~ 2y, 2x + 4y - 3N,

(5.30a)
(5. 30b)

are contained in the irreducible representation N of

U(6) if (2x + 4y — 2N) > 0 and the partitions are not iden-
tical; in that case they correspond to the same qz. Thus
the states obtained by diagonalization of Q" will be linear
combinations of them as, for example, happens when

N =6, where [hihyh;] takes the values

[12, 00]@[10, 20+ [840]+ [822] < [660] 5 642 ]« [ 444],

(5.31)
and the partitions underlined have the same ¢° as they
meet the conditions mentioned above.

So far we have not been able to detect other types of
degeneracy in the U(3) representation, but in any case
their presence will not be relevant for the kind of ap-
plications discussed in the concluding section.

6. THE INTERACTING BOSON MODEL

The most general two-body interaction involving d
and s bosons can be expressed in the form®
2 2

V=% i iitom timiisms 11, 2lymy | Vig | 20m3, 205m3)
X 771 1m1771 gmy gllml £12m2}
=3 2 2 Z{(@h, 20, L Vig| 204, 214, L)

‘

) VL IE MR T W LS PRy
(6.1)

where |2/m) is an harmonic oscillator state of two
quanta so that / is restricted to the values /=0, 2, and
in the last part of (6. 1) we recoupled bra and ket to a
total L, assuming of course that Vi, is invariant under
rotations.

If the matrix elements in (6. 1) are real, as happens
for example19 if Vip=V(Iri—-ryl), then a brief examina-
tion of it indicates that we have only seven types of
independent Hermitian interactions that we proceed to
write down in the notation (2. 6)

Ay =[[nxn]" x{gx X}, L=0,2,4, (6.2a)
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B={nx £l nE (8.2b)
C=7%7 (6.2¢)
D=[nxnf T2+ P Ex £J;, (6.2d)
E=[[nxnPx el E+qlnx[£x £F 1. (6. 2¢)

The A;, L=0,2,4, are the independent interactions
involving only d bosons, and already in the initial work
of Arima and Tachello® it was shown that they can be
expressed in terms oi/\/2 /\/ AY and L%, The B, C can
obviously be expressed in terms of N /\/ of (2.15) while
D is related with the K% of (2. 18) and thus with / % - AZ,
There remains then to determine E for which we first
consider the operator @*=73 ,(-)"@,Q_, taking for @,
the expression (2.13), i.e.,

Q' =V3QxQl,
=VB{L[[mx ERx[mx £
+&VT((nx P x(nET+n 0]
+ 3 E+THX(ME+TH I}

Straightforward recoupling then shows that @* takes
the form

35 Z, W(2222; 2L)V2L+1A, + 7/\/

(6.3)

+§x/'3_5E+3[2/V(N—/\/+1)+2(/\7+5)(1\:’—/\7)—1(2],

(6.4)

where /V, N, and K° are given respectively by (2. 15)
and (2. 18) and W is a Racah coefficient. Obviously
then we can express E in terms of @° and the other
Casimir operators of the groups in the chains (1. 1),
{1.2). In the following equations we given explicitly
the form of all the interactions (6.2) in terms of the
Casimir operators mentioned:

AN +3) = LAY, (6.52)
AQZ%{_L2+2A2+2/\7(/\7~2)}, (6. 5b)
A= LA 42 SNV - 20, (6. 5¢)

1 . =~

=7 (N =MV, (6.5d)
C=W-MN_N-1), (6. 5¢)
Do L a2y 2R a4 5N - 4, (6. 50

= f35{Q2 I3[0 F L RN

+ 20 - 2NEA +5)) (6. 5¢)

From the discussion in the previous sections it is
clear that we can write the matrix elements of an arbi-
trary interaction in the basis of states (5.7) charac-
terized by the irreducible representations of the chain
of groups U(B) 2 U(5) 2 0(5) 2 O(3). From a numerical
standpoint the only stumbling block is the matrix ele-
ment (5.20) of @ for which already the reduced 3j sym-
bols (112; Xs’L’; x"s” L"), (212; M's'L’; A"s"” L") have
been programmed as well as M (X, L) which is propor-
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tional to (000;AsL;xs’L). What remains to be done is to
assemble a full numerical program for the matrix ele-
ments of @*, which hopefully will be achieved soon, ¢

Thus we claim that the group theory, as well as a
good part of the numerical analysis, for general prob-
lems in the interacting boson model, is now available.

Nole added in proof: Since submission of this
paper we have found an alternative procedure for the
determination of the matrix elements {(m.e.) of the
operator @°, which is simpler than the method discussed
in Sec. 5. From (6.5g) we can see that the operator Q!
is a linear combination of /2, E, plus operators diagon-
al in the basis (3.13). As the m.e. of /? in that basis
were given in (4.9), (4. 10), if we construct the matrix
of the operator E of (6. 2e) with respect to the states
(3.13) we shall have available the matrix of Q*. The
operator E is the sum of two terms, each one being the
Hermitian conjugate of the other, hence it is sufficient
to find the m.e. of the first term, i.e., [[nxn]*x &%,
from which the m.e. of the second term follow easily.
The action of the boson operator £ on the state (3.13)
was given in Eq, (4. 6); thus it remains only to deter -
mine the action of [[7x7¥x£]2 on the U(5) > O(5) states
of (3.5).

For this last task we use the definitions (2.4) and
properties of Clebsch—Gordan coefficients of O(3) to
show that

2V2 [[axalPxalp=
[[nxn)xn]s+3[[nxnf <] (i)
+3[[Ex £ xE].
Taking the m.e. of this identity with respect to states
(3.5} with » and v +1 quanta of energy, we deduce

(w+ 1,08’ LM |[[nxn]*x £]5 | vasL M)

(it)
- 5—‘74:?(1) +1,)'s'LM |p*cos3y |[vasLM),
where we have used®?
(o a*xaly=7={3,0} = - /35 g'cosdy. (iif)

The m.e. (ii) factorizes into a product of the m.e. of

#® with respect to the functions (3.7), for which a closed
formula is known,? times the m.e. of cos3y with respect
to the functions (3.6), this being proportional to the
reduced 3j symbol (310,x’s’L ,asL) defined in (5.9) and
for which computer programs are already available.
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APPENDIX A: NORMALIZATION COEFFICIENTS IN
THE CHAIN U(6) D 0(6)

In this Appendix we shall determine the value of the
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normalization coefficient By, appearing in Eq. (4.18).
We choose this coefficient in such a way that the func-
tions in Eq. (4. 16) possess orthonormality properties
with respect to the indices N, p whenever g/(6) and
fiv_py2(b) are defined according to Eqs. (4.19) and
(4.20).

From Ref. 15, pp. 827, 844 we have:

f (sind)™**C* Y cosb) CA2 (cosb) db
0

o+ r+3)!1 5,

T o +2) 2% - NI+ 12 Ay
/ exp(= b") B¥LEE,, /2 (%) L, 2(8%) db
0

=[W+p)/2+2]1 /2[(N = p)/2]! byy.. (A2)

From here, as well as from the definition of g(5)
and Ab) in (4.19), (4.20), it immediately follows that
if we take

1/2
o2 o [ Lot -p)/2]t (p+2) A
B =20 [T van) o B9
then the U(6) 2 0(6) > O(5) kets |NprsLM) of Eq. (4.186)
will be orthonormal in the indices N, p. The correspond-
ing “volume element” in b, 6 is b*(sind)* db ds.

APPENDIX B: TRANSFORMATION BRACKETS
BETWEEN STATES IN THE CHAIN U(6) D O(6)
S 0(5) AND U(6) > U(5) D 0O(5)

The states characterized by irreducible representa-
tions of the chain of groups U(8) 2 U(5) 2 0O(5) 2 0(3) are
given by (3. 13) and (3.5), while those in the chain
U(6) > O(6) 2 O(5) 2 O(3) take the form (4.16). As we
want to develop the latter in terms of the former it is
clear that the transformation bracket is independent of
s, L, M and diagonal in 2*% thus for a given A we can
choose

s=1, L=M=2x, (B1)

The states corresponding to the two chains specified
above can then be characterized by the kets {nvA) and
INpX) given respectively by

=t [s(52) /¢ (22322)]

X L3325 (B) exp(- B /2) o3, (B2a)
(ND» =By, prF(’;Iz-p)/Z(bz) exp(-5%/2)
X (sin6)* Chti(cosd)(a,/B), (B2Db)

where {aln) is the one-dimensional harmonic oscillator
state (3.12), and we made use of the fact that®

o A
X2, (%, %) = (B_2>

As the function X is not normalized with the volume
element (5. 3), we would need to multiply the kets (B2)
by the Mi;/%(3, 21) defined in (5.2) if the kets them-
selves are normalized. As this factor would appear both
in (B2a) and (B2b) we do not include it.

(B3)
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Instead of trying to do the expansion of INpA) in terms
of |nvX) using the expressions given in (B2), it is rather
simpler to make the whole analysis using alternative
realizations for those states in terms of the boson
operators 1, 7 of Eq. (2.4). We proceed now to obtain
these expressions. In their derivation use will be made
of two facts:

(i) 1f

Py(ay, .. (a=a)=2, o

i=1

., @) expl- (a+ @)/2], (B4)
is a normalized »-dimensional harmonic-oscillator
wavefunction of A quanta of energy which is an eigen-
function of the Casimir operator of O(r) with eigenvalue
A +7=2), then

,”7'/42)&/21))‘(.”1, ey 77,) |0>

is a normalized state with the same quantum numbers
as (B4); this is Dragt’s theorem. ?+*!

(B5)

(ii) For the polynomial appearing in (B5) and for any
positive integer p we have, with a notation for scalar
product similar to that in (B4),

(&= &P P 0) = 2p2p + - 24+ 20) (0 WP, (M) | 0.
(B6)

This relation is a consequence of (£+ £ P,(m)10) =0,
and the equivalence £;P(m)10) = (3,/2n,) P(n)!0).

For the case of the U(6) D> U(5) states of (B2a), we
deduce from Dragt’s theorem,

2 172 5/4-1/2
where we want to remark that we have omitted on
the right-hand side of (B7) the same factor Mij/?(}, 22)
that was ignored in Eqs, (B2). Then, from (5.4) of
Ref. 1,

1/2
lOvA):B{,X[F(AiW] w42 (. @M P o) (BS)

where the coeificient BJ, is evaluated by repeated appli~
cation of Eq. (B6), leading to the result

s w2l [ N/24 1)1 @)+ 3) ] 1
Bh=(=) [W..)«),Q]!o+1).’(,,+)+3)1 ’ (BY)
Finally, it is quite obvious that

[nv Ay = (! 2 (@) ovay. (B10)

The phase factor that we have attached to B., in Eq.
(B9) was chosen in such a way that (B10) has exactly
the same phases as (B2a). The proof of this assertion
can be given by a reasoning similar to that presented
in Sec. 9 of Ref. 13; we shall omit it here.

Turning now to the U(68) -~ O(6) states of (B2b), from
Dragt's theorem we obtain

(D + 1)‘ 7]3 Z; (15(77)0'1'25

N—B 3/2 90 /20
|pp > ppx‘n 2 ([)—)\)!(A‘Fl)! S

X(n-n+7%)%0), (B11)

where B, is given in Eq. (A3), and
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(B12)

(59 (2=221) Jaioon,

are coefficients coming from the power series expan-
sion of the Gegenbauer polynomial C}'2(cos6) (formula
8.932.1b of Ref. 15), (x);=x(x +1)+++(x+s-1) is the
Pochhammer symbol. Again, we are omitting a factor
M;i1/%(x, 22) on the right-hand side of (B11). By analogy

with (B8), the general state is now
INoX) = By (n -+ 75 212 pp),

where Bj, is determined by repeated use of Eq. (B.6)
which gives

By, = (=) W12 [

(B13)

(p+2) ]1 2
2V (N = p)/ 2N +p)/2 + 2)

(B14)

The phase factor in (B14) was again determined in such

a way that (B13) and (B2b) have exactly the same phases.

The last step in our analysis consists in the expan-
sion of the binomial (1+ 7+ 7%)** ¥~/ that appears in
(B13) when one introduces there the explicit expression
(B11) for |ppX). After an interchange of sums, by
comparison with (B10) it is deduced that

|NpXy = 35 v [NpX) [wwX), v =) even, (B15)

with (nwvXINpX) given by Eq. (4.21),
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Exact solutions of some multiplicative stochastic processes
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The theory of multiplicative stochastic processes with completely and quasicompietely random Gaussian
statistics is discussed. Operator valued equations with stochastic coefficients are solved exactly for various
types of statistics using the path integral technique. Generalizations of previous results for such stochastic

processes are obtained.

(. INTRODUCTION

The first applications of random processes in physics
were mostly concerned with the so called additive sto-
chastic processes. From a mathematical point of view
such stochastic processes are described by linear inte-
grodifferential equations with the inhomogeneity as the.
random variable of the process.

A harmonic oscillator with 2 random- driving force
F(¢):

@z—iwob+iF(t) (1.1)

dit
is a simple example of an additive stochastic process.
Such processes were studied extensively in the past in
the theory of Brownian motion or in the theory of ran-
dom-noise currents in electronical devices.?

In many physical situations we have to deal with equa-
tions with a much more complicated dependence on the
random variables. For example, the harmonic oscillator
from Eq. (1.1) can be driven by the random force F(¢)
in the following way:

db

— = —iwgb +iF()b*,

a7 (1.2)

i.e., the random variable instead of being the inhomo-
geneity, multiplies the oscillator operator b*. Equation
(1.2) is only an example of a wider class of stochastic
processes for which the random variable enter in a
multiplicative way. Such processes are called multi-
plicative stochastic processes (MSP) and have been
studied in Ref. 2.

Many physical applications of MSP can be found for
example in the theory of magnetic resonance,?* In the
last two years or so the multiplicative stochastic pro-
cesses have been applied in atomic physics in order to
describe different incoherence effects of atoms coupled
to a laser field. One of the first application of this theo-
ry to atomic problems was done in the framework of a
two-level atom coupled to a stochastic electromagnetic
field with a stochastic random phase.® In a different
context, it has been shown that the QED atomic Heisen-
berg equations of motion describing an atom coupled to
a quantized electromagnetic field have the formal form
of a multiplicative stochastic process with the free-
field operator of the electromagnetic field as the “ran-
dom” variable, ¢

It turns out that the entire class of problems of inter-
est in the theory of MSP can be written in the form of
the following operator-valued equation
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(‘j—f =M+ ix @My +ix* (ML,

(1.3)
where ¢ is an operator-valued vector of dimension n
with x(¢) and x*(¢) being two complex stochastic proces-
ses, The matrices M,,M,, and M, are in general com-
plex, time independent and of the order #Xn. In this
paper we solve Eq. (1.3) exactly for stochastic proces-
ses of Gaussian type. In our approach we use the path-
integral technique in order to find explicit solutions and
to avoid tedious calculations performed in previous
references.

In Sec. II we introduce our notation and define the
class of stochastic processes by a proper definition of
the functional measure in the proper path integral. Next
we define a'class of the so-called quasicompletely ran-
dom processes for which exact solution of Eq. (1.3) can
be obtained. These processes have not been discussed
previously.

In Sec. III we obtain exact solutions of our problem
applying path-integral techniques together with scatter-
ing-theory methods. Exact solutions are produced even
for cases when Eq. (1.13) has a stochastic dependent
initial boundary condition. In Sec IV a simple example
of the theory is solved as an illustration of the method.
Finally, some concluding remarks are presented, The
results of this paper are the generalization of the theory
of MSP presented in Ref. 2. The initial boundary con-
dition stochastic dependence and the quasi-completely
random processes have not been discussed so far in the
literature, All these problem started to be important in
the theory of incoherence effects in atomic photophysics.

Il. GENERATING FUNCTIONS AND PATH
INTEGRATION

To define a random process we have to introduce the
statistical properties of the random variables x{¢) and
x*(4). This can be done in a twofold way. We can assume
an infinite set of all possible correlation functions of x
and x* or we can define in the space of all possible real-
izations of x and x* a probability measure with respect
to which the stochastic average should be calculated.
For any arbitrary dynamical variable #[x,x*) which is
a functional of the stochastic variables« and x* we
define the following stochastic average:

B = [Lulx,x*¥]1 7 [x, x*]. 2.1)

In this equation a functional integration’ (path-integral)
over all possible relaizations of the random variables
x and x* is performed. In order to have a Gaussian

© 1979 American Institute of Physics 45



process we assume that the functional measure ) u[x, x*]
has a Gaussian density

Dulx, x*¥| =N DxDx*
10 L * (Tl (2.2)
Xexpl-3 | dT,dT,(x(1)),x (T)K (7, T ) *(7,)
y
where K(7,, 7,) is an arbitrary positive 2 x2 integral

kernel and N is a normalization factor to assure
JDu[x,x*]=1. For quadratic density measure the func-
tional integration can be done exactly. For example,
the characteristic function

219,91 =(expli [ drx(DF* (1) +i [dTx*(DNI(DD,  (2.3)
with J and J* arbitrary functions has the following
form?®:
Zly g
*
= exp[-— L[ dr, dr, (9%, () (7, Tz)@ (7(’:)2)>] 2.0

where the integral kernel A(r,,7,) is a 2X2 matrix, in~
verse to the matrix K (1,, 7,):

f dTlA(Tu 73K (Tas 72)26(71 - T,). 2.5)

The measure (2.2) defines the random process com-~
pletely. By a proper choice of the functions K we can
generate different Gaussian statistics of the random
variables x and x*. All the correlation functions of the
random process can be than computed from Eq. (2.3) by
functional differentiation of the characteristic function
Z [5] ’}/*] given by Eq. (2.4). For example, we have

<x(t)> = (=1) ggg‘%(— , =0,
s J %20
N -
(x (t)> = (- l)égL(t) ‘ 0, (2. 63)
J= g *=0
e 0z
x(B)x(s) = (=) W‘ e 9%e0
:%(Azz(ﬁs)‘*‘Azz(Sl”)y (2.60)
(i -2
{xlt)x* (3»* (~1) 5?*0)5; (s) Ss y*.o (2.6¢c)

=1(8,(6,8) + 8y (5,1).

In Egs. (2.6) the expressions 4,,(f,s) with 4,j=1, 2 are
the proper matrix elements of the matrix A(/,s). A com-
pletely random process corresponds to the following
choice of the A’s functions:

a,L,8)=2D,5(t-s), i,j=1,2,

where Di/ are constant coefficients. For the purpose of
this paper and further physical applications we are going
to generalize Eq. (2.7) using the following formal finite
series expansion of the A functtons

ir 5(f ~ 2.8)

The class of stochastic processes with correlation func~
tions given by Eq. (2.8) is called quasicompletely ran-
dom processes. The expansion (2.8) truncated to the
first term with »=0 describes a completely random
process given by Eq. (2.7). The expansion given by

Eq. (2.8) can be obtained, for example, from the
following physical arguments.

2.7

a,ylts) i dtzn
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Let 4, be stationary correlation functions with
symmetric power spectrum:

(tﬂ-fE;EW“WA ), 3,@=3,(-w. (2.9
In many physical applications, the power spectrum of
the stochastic process is a Lorentzian function centered

around w =0, and with a bandwidth T, ,:

2r
w2+r?j

{24

W)= (2.10)

Now the relation (2.8) can be obtained by a formal
Taylor expansion of the power-spectrum functions

w? d?A w? a3

Su)=2, @5 Zo¥| T @t

w=0

(2.11)

The Fourier integration of the expansion (2.11) leads to
a quasicompletely random process with the following
coefficients I"" ;

n J2nA
ry = éz-nl)z S (2.12)

We have truncated the sum in Eq. (2.8) to a finite num-
ber N of terms to avoid problems with convergence. The
series expansion (2.8) should be understood as an
asymptotic approximation of the functions.

If the Lorentzian given by Eq. (2.10) has a very sharp
power spectrum, i.e., T',, ~0, we can keep in the ex-
pansion (2.8) only the first term with T}, =2D,,. In this
limit the process becomes completely random [see Eq.
(2.7)]. Higher corrections coming from the fact that
I‘U is finite may be calculated in a systematic way using
the expansion (2.8).

In general, however, we can adopt Eq. (2.8) as the
definition of quasicompletely random processes without
any particular justification based on the power-spectrum
properties.

tH. SOLUTIONS OF STOCHASTIC EQUATIONS

Our goal in this section is an exact expression for the
following stochastic average:

Wy = [0 ulx,x* Wlx,x*],

with ¥[x, x*] satisfying the evolution equation (1.3). We
can get rid the statistically independent part of the evo-
lution in this equation, introducing the “interaction pic-
ture” transformation:

(3.1)

() = e Moty (1), (3.2)
This transformation leads to the following equation:

‘Z—‘fﬁ = [ix (M (1) + ix* (DM (£} ¢y, (3.3)
with

M, () = e Motm eMot, M,(t)= e~Motp oMot (3.4)

We can now write the solution of Eq, (3.3) in the follow-
ing form:

b )=T exp[ifth(x('r)Ml(T) + x* (TIM,(T) ]9, (0), 3.5)
]

where T denotes the chronological product of the inter-
action-picture matrices given by Eq. (3.4). We investi-
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gate first the case when the initial condition #,(0) is in-
dependent on the stochastic properties of the random
variables x and «*. In this case, in order to find the
stochastic average (3.1) of Eq. (3.5), we have to com-
pute the following functional integral:

W ()
= (Texpli far(e(mM, (1) + »* (ML) Dt,0).  (.6)

o]
The functional integration in Eq. (3.6) can be done ex-
actly by applying the formulas (2.3) and (2.4) for 7-
ordered J matrices®:

t
Gy =T exp [— éf d’rlf(ZTQ(Ml (1,),M,(7,})

X A(r,T (’AV; E: ;>]¢,(0). (3.7)

With the choice of the A functions for quasi-completely
random process [see Eq. (2.8)] we obtain from Eq.
{3.7) the following formula:

W)
_Texp[ 1L§fd 7T, 214,..(7 _‘%S_T’];L,(o)c (3.8)

This expression can be converted into a differential
equation:

da o _ lN " arM (f de(f) )
37<J1(t)> -~ 2%?1-‘ am dm <¢I(f)>

3.9)

The time derivatives of the M,(t) matrices can be ex-
pressed in terms of multicommutators. From Eq. (3.4)
if follows that

LU (1wl ]+ 1, ] = L0100,

(3.10)
where L is the Liouville operator acting in the matrix
M, or M, as follows:

Le=[ M. 3.11)

From Egs. (3.2) and (3.9) we obtain the following dif-
ferential equation with constant coefficients for (¥):

AW ) _

— M, - 12 Iy, (L"M, HEM @)

(3.12)
This equation is the main result of this paper. Solving
this linear equation (for example, by Laplace transform
techmque) we obtain the exact solution of our problem.

If F 5 =2D03(56% +5%5}), , for a completely-random
process Eq. (3 12) reduces to a result already obtained
in the literature,

Equation (3.13) was obtained with an additional as-
sumption that the initial condition does not depend on the
random variables of the stochastic process.

We are going to generalize our results for the case
when it is not so. We assume that the initial condition
¥,(0) has the following specific dependence on the ran-
dom variables:

h,(0) :exp[z'fds g, (s)x(s) + g,(s)x*(s)[F,(0), (3.13)

where g, and g, are two arbitrary functions and d),(o is
the remaining, statistically independent part of the ini-
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tial condition. If we choose, for example, gl(s)zgz(s)
=56(s) we have a simple phase dependence of the initial
condition on x(0) and x*(0). This kind of dependence
occurs in many atomic physics applications.® When the
initial condition (3.13) is used we have the following
modification of the formal solution (3.6):

W (1)) =(T exp[ifdf((e(t - 7)6(T)M,(7) + g, (T)x(7) )
o (3.14
+8(t = T)O(TIM,(T) + g, (T)a* (TNF,(0).

The functional integration in Eq. (3.14) can be done
explicitly by applying Eqs. (2.3) and (2.4) with proper
J and J* functions:

W) =Texpl- 1, 117,
xfds (6l - 5)8(s )d](i,,(s j;”:f)

(3.15)

+ (6t = 5)8(s) Ty +——1))]

We can convert this expression into the following differ-
ential equation:

:—52‘521*” (d"M d'M,(t) d"M, () L4 d"M;,(t)

datr dl‘" dt" At (3.16)

Using the relation (3.2) and (3.10) we rewrite this equa-
tion in the following form:

4y
at
=(M,-1% Z)Er (L") (LM ) di"( (LM,
(3.17)
L4,
+ SE (L M )X .

For completely random processes with T}, =2D67(5 153
+635;) we obtain from Eq. (3.17)

a)
dt

= (M, ~ DM, M, — DMM, - Dg,()M, - Dg,()M X .

(3.18)

The phase of the initial condition (3.13) enters the dif-
ferential equation (3.18) in the form of time-dependent
coefficients g, (t) and g,(f). Equation (3.17) is a general-
ization of the result (3.12) for statistically dependent
initial condition (3.13).

IV. EXAMPLE OF AN EXACTLY SOLUBLE MSP

As an example of an exactly soluble multiplicative
stochastic process let us take a well-known model —

Hamlltoman from nonlmear opticsi®:
H=rw b'b+2(b*2€+é b2, (4.1)

This Hamiltonian describes generation of higher har-
monics by a quantum oscillator coupled to a classical
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electromagnetic field. In order to have a stochastic
process we assume that the electromagnetic field beside
its optical frequency w has a real stochastic phase. The
electromagnetic field amplitude has then the following
form:

E(t)=C, expl- iwt_ifdsx(s)], 4.2)

where x (s) is a real random variable with a Gaussian
statistic:

(x(s)x(t)y =2D5 (- s). “4.3)

The Hamiltonian (4.1) leads to the following Heisenberg
equation of motion:

db . E (Db
g = iweb ~ i (H0*. 4.4
Equation (4.4) has the form of a multiplicative stochas-
tic process illustrated by the example (1.2) in the intro-
duction. The Heisenberg equations of motion generated
by the Hamiltonian (4.1) can be written in the form of

the matrix equation (1.3) with

() =(b(), exp[-iwt—ifx(s)ds]b'(t)), (4.5a)
r—iwo —z‘(fo

My=| (4.5b)
Liff“ ilw, —w)

M1: 0 0 , M2= 00 (4.50)
0 -1 0 0

According to the theory developed in this paper the
stochastic average satisfies the following differential
equation:

d

XD — o, - D22 (4.6)
This equation can be solved using the Laplace transform
technique. After simple calculations we obtain

BN =J 1=

b(0)(z — dwg +iw +D) — i€ 5*(0)

- . (4.7
z2+z(D+iw)+w§—wwo+zw0D—€oé: .7

X g%t
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Computing the roots of the algebraic equation in the de-
nominator in Eq. (4.7) and choosing properly the con-
tour of integration C we find the explicit time evolution
of (¥(t)). The solution (4.7) is a simple example of an
exact solution of a multiplicative stochastic process and
a straightforward application of the method.

V. CONCLUSIONS

In this paper we have presented a method of how to
solve exactly operator-valid equations with stochastic
coefficients. For completely random Gaussian process-
es we recover the result already published in the litera-
ture.? The Feynman path formulation of Gaussian pro-
cesses simplify greatly the previous proof removing
unnecessary assumptions. For quasicompletely random
processes and statistically dependent initial conditions
new solutions are obtained. Physical applications of
multiplicative stochastic processes in atomic physics
will be published separately.®
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We relate here the geometric formulation of Hamilton’s principle presented in our previous paper to the
usual one in terms of a Lagrangian function. The exact conditions for their equivalence are obtained and a
method is given for the construction of a Lagrangian function. The formalism is extended to spinning
particles and a local Lagrangian is constructed in this case also. However, this function cannot be

extended to a global one.

1. INTRODUCTION

In our previous paper' we presented a geometrical
framework which made it possible for us to treat
Hamilton’s Principle in a coordinate-free manner.

A mechanical system was characterized by its evolu-
tion space, E, and Lagrange form, 0. The equations of
motion are expressed as

d
EGW)E Ker oz, (1.1)

where g denotes the lift to E of the motion-curve g
lying in configuration space, Q.

In the classical case, when a Lagrangian function L
is given, one can introduce a X field of 1-forms called
the system’s Cartan form, in terms of which the
Euler—Lagrange equations take the form

d
5@)0)6 Kerdr;,,, (1.2)

Comparing (1.1) and (1. 2) we said that a system given

by (E, o) has a local variational description if there

exists at least locally (i.e., defined on a local chart) a
A field of 1-forms for which ¢ =dx,

The necessary and sufficient condition for the exis-
tence of such a X is do =0, referred to by Souriau® as

Maxwell’s Principle.

Our most interesting result was to prove that although
the equations of motion of spinning particles can be ex-
pressed in terms of a Lagrange form o, satisfying do
=0, there cannot exist a globally defined X with dx =0,

However, the definition of the Cartan form given in
Ref. 1 was rather “ad hoc” and valid only in the classi-
cal case, Also, it was not entirely clear what the above
result meant in terms of a Lagrangian function,

We propose here a slightly different framework which
can easily be extended to include spinning particles as
well.

We shall study the world lines in @ XR; the role of
the evolution space will be played by a subset F of T(g
XR). L will be substituted by a homogenized Lagrangian,
[ - Then we can state that there is a unique way to
geometrize the problem, mamely by using the field of
1-forms A=4d/ . (d denotes the operation of “vertical
differentiation, ” see Klein®* or Godbillon. %) This A can
be projected onto E; its image X coincides with the
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Cartan form introduced in Ref. 1. Using Klein’s
results we can establish the necessary and sufficient
conditions for the possibility to recover a Lagrangian
function from a field of 1-forms A defined on the evolu-
tion space, In local coordinates this is expressed as

X must be of the form a,dg®*+bdf (a=1,...,n) and

v¥05a, + 93 =0, B=1,...,n 1.3)

must hold, In this case L has the local form,

Lig,v,t)=a,v*+b. (1.4)

In this framework the generalized solutions of the
variational problem will be constant-dimensional sub-
manifolds of F called evolution leaves. Their projec-
tions on space—time are C” curves satisfying the
Lagrange equations. These leaves can be set in one-to-
one correspondence with the evolution curves of E.

Hence our results obtained in Ref. 1 really mean that
there cannot exist any globally defined Lagrangian func-
tion for the spinning particle; nevertheless, condition
(1. 3) is satisfied and we can construct a local Lagran-
gian function in this case as well.

2. GENERAL THEORY

We give here a short outline of a geometrical frame-
work slightly differing from that presented in Ref. 1.
This is a kind of synthesis of the ideas of Souriau® and
Klein, 3

The basic point is to work with world lines in @XR
rather than with motion in configuration space, @, time
being a fixed exterior parameter. This approach is
natural in relativity and turns out to be useful in this
context as well. Now we carry over our entire apparatus
to this context.

A. Motions

To the motions in @ correspond the world lines para-
metrized by an arbitrary parameter 7. In local coordi-
nates a world line is

Bt =) =((1),t(N)c @xR. 2.1

It is required that t>0 (the dot denotes the derivative of
tby 7).

B. The Hamiltonian action
A change in parametrization shows that the Hamilto-

nian action has the form
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o) f ( £(1), g(T)’ t(r)) i(r) dr.

If x=(g,¢) is a local chart for @ XR, then the corre-
sponding natural chart of 7(¢ X R) will be denoted by
(x, x)={q, t,4,1).

Define F:={ (x,x)e T(Q XR):}> 0} and introduce the
homogenized Lagvangian [ as:

L:Fﬁ(q,l,('],f)—'L ( y—;],t) t

[ is homogenous of order 1 in #; using / the Hamilto~
nian action is

ol@)= [ 'L, h)ar.
C.States

(2.3)

(2.4)

In Ref. 1 we have identified the states of the system
with the points of E. The points of F can be thought of
as states as well; two points of F represent the same
state and hence are called physically equivalent if their
first coordinates coincide and second coordinates are
proportional.

Define
N:F—E as Nilg, t, 4, 1) = <q,g,t>,

then two points of F are physically equivalent if they
are mapped to the same points of E by IL

Let # be a curve in @ XR parametrized by 7. Then
define

R (1) 1= (1), B (7)) (2.5)

to be the lift of & to F according to 7. By changing the
parameter we get an entire family of curves in F, which
cover a two-dimensional submanifold lying in F, In
particular, to the motion curves corresponds a system
of two-dimensional submanifolds with the property that
through every point of F passes exactly one such sub-
manifold called an ewvolution leaf. 11 sets up a one-to~
one correspondence between these leaves and the evolu-
tion curves of E. Hence the system’s evolution can be
described alternatively by the evolution leaves of F.

D. The Cartan form

The “geometrization” of the problem—which turned
out to be useful in Ref. 1—is based on the following
lemma:

Lemma: Let there be given an / : F —~R function which
is homogenous of order 1 in x. Then there exists a
unique field of 1-forms A of F which satisfies

Ty .
[ L), k() dr = LT A. (2.6)
Ty h
In local coordinates this A is given as
A=d/ =a;/dx®, 2.7

the “vertical derivative” of /. (For the definition of d
see Klein, ** or Godbillon®; 33/ denotes 3/ /3x%.)

One verifies at once that A is homogeneous of order 0,
semibasic, and d-closed i,e. dA 0. Klein has shown
in Ref. 3 that these conditions are also sufficient for A
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(2.2)

to be locally, i.e., on a local chart, of the form d/. In
local coordinates, if A is given as

A=A dx®, then [ =A, %" (2.8)

The above defined A can easily be related to the
Cartan form X introduced in Ref. 1.

Definition: An o p-form on F is said to be projectable
onto E iff there exists a unique 3 p-form on F for which
a=1*(8).

One shows that a semibasic 1-form on F is project-
able if it is homogenous of order 0; consequently our A
defined in (2. 7) is projectable.

In local coordinates we get

oL 6q oL
A= * J1 o -2 .
(av“ I )dq + [( : av‘"> I]] dt. (2.9)

Thus its image under 1l is exactly A, the Cartan form
introduced in Ref. 1. Conversely, if we are givena X
field of 1-forms on E, we can pull it back to F, If A
=a.dq® +bdt is a semibasic 1-form on E, then its pull-
back is

M*() = (a, -Mdg® + B 1)dl (2.10)
One verifies that d(IT*(\)) = 0 iff
v¥a, +2xp =0, B=1,...,n 2.11)

In this case the local Lagrangian function is given as
Lig,v,0)= (2.12)

These last two formulas will be very important, for
they not only express the necessary and sufficient con-
ditions under which a local Lagrangian function can be
recovered, but they even give its explicit form.

a,v® +b.

E. Calculus of variations

Our investigations in Ref. 1 were based on the heuris-
tic idea that calculus of variations can be thought of as
a differential calculus on an infinite-dimensional mani-
fold. We will also keep in mind this idea now; the
geometrical framework will be slightly different.

Let us choose two points in Space—time x1 =gy, ty)
and x, = (g;, ;) and consider the C” curves joining these
points. (Denote their set again by /.) The manifold
structure on /2 is defined by introducing a Banach-space
structure on its tangent space. One of the basic postu-
lates of classical mechanics is the absolute status of
time; this property will be reflected by the requirement
that time be not varied. Hence we define the tangent
space of P at a curve & to be the set of all C” vector
fields along % which can be extended onto a neighborhood
of h, vanish at the endpoints and have zero time-com-
ponent, i.e., have the local form (¥, 0).°

In order to calculate the stationary curves a very
similar treatment as in Ref. 1 is applied. Finally we
get: The directional derivative of § by an element ¥ of
the tangent space at a point g,

Y(9)(@)= [ dA(-, T), (2.13)
h

where Y again denotes the lifting of the vector field Y to
F; in local coordinates
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Y=(v, V) with ¥*=3,Y%® (2.14)
(see Klein®).

Now, the corresponding form of the Du Bois—Rey-
mond lemma assures that

Y(9@) =0 iff dAG, V) =0, ¥ veT,p.

Note that because time is not varied, this does not

(2.15)

mean that /LIT(T) < Ker dA;7 ., nevertheless a similar
line of thought as in Ref. 1 can be applied:

H,:={X=T,T(@R):aAX, V)=0, ¥ YeT ,T(@XR)

of the form (Y30, ¥3,0)}.° (2. 16)
Then one verifies that g is a stationary curve if
ET(T)GH’!(T\ (2.17)

[n(1) = (g(n), H(7))].

Suppose H, has constant dimension for every y< F;
one verifies then that if X, Y& H,, then their Lie brac-
ket, [X, Z] belongs also to H,; hence we can apply the
corresponding theorem of fiber spaces (see Souriau?®)
and get:

Proposition: Through every point of F passes exactly
one leaf, whose tangent space coincides there with the
H-subspace ordered to this point : We call these leaves
the leaves beloneing to A (or dA).

One can verify that if we start with L, then codim
H, is equal to the rank of the matrix ;3L |; the pro-
blem will be said to be a regular one if this rank is »;
che leaves are then two-dimensional submanifolds of F.
We shall consider them as the generalized solutions of
the variational problem. By a straightforward calcula-
tion one verifies that:

Theorem: Suppose the problem is regular; then the
leaves belonging to dd/ have the following property:
Their projections onto @ XR are C*-curves satisfying
the Lagrange equations.

F. Relation to symplectic mechanics

We see that the 2-form dd/ plays a fundamental role
similar to that of o in Ref. 1, This is a consequence of
the following,

Proposilion: ©:=dd/ can be projected onto E and dZ
=0, dz =0,

If A=T(*(2), then 2 = [I*(d)).

The fundamental result of Klein in Ref, 4 states that
if £ can be projected on E, and dx =0, dZ =0 both are
valid, then there exists a local / with = =dd/. The
most general / is given as [ —k/ +3,f £* where fis a
function on @ X R alone. (Here we recognize the well-
known gauge transformation.) In terms of L this means,

o o O
L —~FkL +ﬁa‘ v +_(ﬁ'
Conversely, if we are given a pair (E, ), we may pull
0 back to F and so define a Z; do =0 iff 4¥ =0. Our local
variational principle proposed in Ref. 1 states the ex-
istence of a locally defined A with dA =0; as we have just
seen, this does not mean automatically the existence of
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a Lagrangian function. In order to decide whether this
stronger requirement has to be made or not, we have to
study spinning particles, for in classical cases the
problem is solved.

3. VARIATIONAL FORMALISM FOR
SPINNING PARTICLES

After this general framework we are ready to turn
to the construction of a variational formalism for spin-
ning particles. Remember, that in this case E=T(Q)
XRxS%, and the Lagrange form is given as

o ={(mdv ~ Edt)Ndg - vdt) + (F, dq % dq)}

+{d(u (s, Bydt) = X(s, dsxds), } 3.1)

(¢, *) represents the scalar product in 3-space), Here
the first curly bracket is the Lagrange form of a particle
moving in an electromagnetic field; in what follows we
shall study only the second one representing the spin
interaction.

As spin can be thought of as an inner degree of free-
dom, it seems to be natural to treat it together with
configuration space; we will simply substitute @ by €
x 8%, A local Lagrangian function would then be an L
defined on a local chart of T(@ XS*)XR, To L would
correspond a homogenized / according to the formula

L(([:s:t,q.yé;;)::l‘ <(];S’;g:;£’/) i’ (3.2)
which yields the Cartan form
A e 2L AL
= —-df + =5 ds® .
A e dg® + Py df ﬂs“{lq . (3.3)

The exterior derivative of this must coincide with the
pullback to F of the system’s Lagrange form. The
evolution space would be 7(¢ X S*)XR, Our original £
was merely T(Q)XRXbQ, but this does not matter as ¢
can be trivially extended to T(Q X $*)x R as it has no ds
component,

In order to find a variational formalism for spinning
particles we have only to find an additional term of the
spin part of o, ©

spin®
The pullback of the spin part to + is simply

0*(0gy,) =d(u(s, b)d) - Xs, ds X ds), {3.4)

where As is the proper angular momentum, Us is the
proper magnetic momentum (see Ref. 1 or 2) and X, p
are real constants.

Thus we have to solve the equation

rhilspin:n)’((cspin)ﬂ (3.5)

Our most interesting result in Ref, 1 was that there
cannot exist a globally defined € field of 1-forms with
d© =0g,,; (3.5) shows then that this really means that
no global Lagrangian function can exist. In order to con-
struct a local Lagrangian we must find first a local
potential for the spin part of 0. The magnetic-field
spin-interaction part is itself a total differential, hence
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a (global) potential for it is
A - /.L(s, B)dt,

spin

(3.86)

Let us study now the second term. We introduce the
atlas of $? consisting of the charts F, and F_:R* — §%:

o 2s¢
[F*(S)] ST a=1,2, s=(s1,sz),

1-1Isl?

3T -
[F*s ]—im. 3.7

One verifies at once that on these charts the form

1,.2 2.1
VY )\sds - §°ds
spin =+ 2 1+ 0+ 5D (3.8)
is a potential for 0,.%). The results of (2.4) can be then
applied; (2. 11) is verified, hence by (2. 12) the corre-
sponding local Lagrangian functions are

Ls(pii)n(s9 S.):“<s: B>, (3.9)
. 2X . .
Ls(nzi)n(s)s):im[”szsl+3132]- (3. 10)

Summing up, the local Lagrangian function for spinning
particles is given in the above coordinates as

Lq,s,0,8,0={4m*+@,q]~vig)}+ {H(s, B)
i—-——-;rzA [ - st +s1¢] 3.11)
1+ Isl ’ :
with gauge transformation

2 o O
L—pL+2L e p 20y o

h aq® R YR PR

(Here f is any real function on @ X S*XR,)

From (3. 10) we see at once that none of these local
Lagrangians can be extended onto the entire evolution
space. This can be demonstrated by observing that:

51:0: S9 T %, *5:1:‘923 3'2:0’

$1=0, s;—=, 8.1:0 ’ 3'2:0:
both tend to the same point of 7S? [namely to the 0-
tangent vector at the lower (resp. upper) pole], but L

tends in the first case to ¥2X, in the second case to 0.
Hence L cannot have a limit.

In this case the rank of 10 ;L1 is 2n+2, H is four-
dimensional; the leaves belonging to L are thus four-
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dimensional submanifolds of T(Q X §*XR). Their pro-
jections onto @ XS*XR are C” curves satisfying the
Thomas equations, (See Refs. 1 and 2.)

4. CONCLUSION

We have shown that even the spinning particle has a
local Lagrangian function. Thus we are led to the
following modification of our local variational principle:.

Definition: A mechanical system given by (E, 0) is
said to have a local variational description if there
exists a A field of 1-forms with the following properties:

(i) dx=¢
(ii) A is semibasic,
(iii) the pullback of X to F is d-closed, d(II*(A) =0,

Under these conditions there exists a Lagrangian
function L on each local chart of E and the system’s
Lagrange form is the projection of dd/ onto E.

The necessary and sufficient condition for (E, 0) to
have a local variational description is

(i) do=0 {Maxwell’s principle),
(ii) d(1*0) =0.

The local vaviational principle states that these con-
ditions are verified for any mechanical system,
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The inverse scattering problem for the scalar wave equation associated with propagation through a

medium whose index of refraction differs from that of free space in a region of compact support is treated
when the scattered data is given for diverse directions of (plane wave) incidence, scattered directions, and
frequencies. The problem is formulated in terms of the minimization of a nonlinear functional which is
bounded below, subject to constraints. It is shown that the conditional-gradient method may be employed,
the iteration process converging to stationary points. The linearized version (corresponding to the

perturbed wave equation with only the linear perturbed terms retained) of the nonlinear functional is
considered as a special case. In particular the linearized version related to the Born approximation leads

to some additional new results.

I. INTRODUCTION

The inverse scattering problem for the scalar wave
equation associated with propagation through a medium
whose index of refraction differs from that of free space
in a region of compact support is treated when the scat-
tered data is given for diverse directions of (plane wave)
incidence, scattered directions, and frequencies, In-
cluded in the analysis are errors in the measured data,

As a preliminary the results of the direct scattering
process is presented. Then the inverse problem is
formulated in terms of minimizing a nonlinear functional
which is bounded below, subject to constraints. It is
shown that the conditional-gradient methode may be em-
ployed, the iteration process converging to stationary
points.

The linearized version (corresponding to the perturbed
wave equation with only the linear perturbed terms re-
tained) of the nonlinear functional is considered as a
special case. It is shown that this simplified model
corresponds to known techniques. In particular, the
linearized version corresponding to the Born approxima-
tion is treated in some detail, leading to some additional
new results,

THE DIRECT SCATTERING PROBLEM
Consider the equation
Au+ Pk (x)u=0, xinIR® (1)

where the index of refraction #(x) has the property that
it is a real continuous function which is identically
equal to unity outside some sphere of finite radius.
Here, k=w/c is the wavenumber associated with the
suppressed harmonic time dependence of the form
exp(-iwt).

Consider an incident wave
i (x) = exp(i ki~ x)
where the incident propagation vector
ki =k (sin#cos¢ti + sinbisingtj + cos k)

is in the direction given by the angular variables

(8%, @*) of the spherical polar coordinate system. The
presence of the scattering object represented by the
non-vanishing of (»* -~ 1), produces a scattered field
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u* (x). With the decomposition
u(x) =1 (x) + w(x).
Equation (1) can be placed in the form
Aut + 2Rt = R2[1-n2 (x) ] (x). 2)
The following result is obtained from Ref. 1.

Theorem: When [#2(x) — 1] is a real continuous func-
tion of compact support, the unique C? solution °(x) of
Eq. (2) exists satisfying the radiation condition as
1% =y—w

a—w’—:ikus+o(1—>.
or v

For further analysis Eq. (2) will be converted to an
integral equation. As a preliminary to this, set

vix)=n*(x) -1. 3

it will be assumed henceforth that the support of v(x) is
contained in a fixed domain D, where D, is a ball of
radius R,. Let D be a ball of radius R, containing D,
so that R,>R,. A fixed auxiliary function n(x) will then
be defined that has the properties,

(1) n(x) is a real Holder-differentiable function,
(2) nx)=0 for x| >R,
(3) n(x) =1, for xe D,.

Equation (2) is then placed in the form

2 3 -
ule) =ud ) +5 £ &f’:'}‘;x—y'—)— Uy )n(y)u(y) dy (4)

The reason for the introduction of 7(x) into the integral
equation will become apparent below.

When | x} — =, the far field behavior is given by

kx

us(x)Ne_XrM).g(ki,ks;v)’ ks = =

x|

where the complex scattering amplitude g{(k!,k?;v)
has the form

gf(k‘,k’;v):;lk;r f exp(~iks*y)v¥)n(y July)dy (5)
D

k® is a vector of length % in the scattered direction re-
presented by the angular variables (6, ¢*), i.e.;

k* = k[sin & cos¢*1 +sin@sing*] + cos k.

© 1979 American institute of Physics 53



FORMULATION OF THE INVERSE PROBLEM

The inverse problem consists of determining v(x)
hence n(x) given the scattered field data. When mea-
surements are made in the far field, values of
gli? ,k%;v) are given for a set of incident directions kf,
scattered directions k® observed either at a single fre-
quency as denoted by a single wave number %k, or at a
set of different frequencies.

In what follows,the actual material properties of the
scatterer will be denoted by #*(x) or v*(x). As men-
tioned previously, the support of v* (x) will be contained
in D,. The scattering amplitude of the scatterer will be
denoted by g(ki,k®;0*). The measured far scattered
field for a particular direction of incidence k¥, scatter-

ed directionk®, and wavenumber k= ki | = kS| will
have the form
gk ks 0%) = gk, kS 0%) +€(ki)k$) (6)

Where ¢(k!, k) denotes the errors of measurement in
the scattered field.

If the measurements of the scattered far field con-
sist of a set of N discrete measurements made in the
scattering directions k§, 1=1,2,...,N, corresponding
to the directions of incidence ki with {ki; ='ksi, on
can form the following nonlinear functional:

N

=2 Wik, k)| glkl kS ;o) = go(ki  k3o%) |2 (1)

1=l
Here W(ki, k%) is a nonnegative weight function depending
upon kf and k® only, and is assigned a priori, It can be
chosen to place greater weight on those measurements
that have the least error. The optimum choice of
wiki,k#) will not be investigated here. However, a par-
ticular choice for the weight function will be given be-
low in the section on the Born approximation.

If there are no errors in the measurement, it is seen
that f(r) =0 when v =¢*, The effect of errors may do
two things, change the value of the minimum [the local
minimum of f(z#) may no longer be zero], and change the
position of the minimum corresponding to v* to a per-
turbed value vf.

In the presence of errors in the data, as is obvious,
one cannot hope to obtain »* precisely, but must settle
for a suitable approximation. Such an approximation is
given by »%, and since as will be shown later, the deri~
vative of f(v) is bounded on a suitable set, »* will be
close to v* when the errors are sufficiently small. Thus
¢* or its approximation in the presence of errors in the
data, »*f will be sought. (In subsequent analysis, the
subscript ¢ will be suppressed.)

Since f(r) is a nonnegative functional, the mathemati-
cal problem reduces to finding the value or values of ©
which minimizes f(v).

Note that the measurements do not have to be made at
the same frequency. Since one can allow |kjl| # ik} | for
{+m. However, if they all are at the same frequency,
then 1kji=k, 1=1,2,...,N.

If the far field data consists of measurements in the
cone K5 (0= ¢°< 0,, 0+ ¢« 27) of scattered directions
corresponding to a single direction of incidence and fre-
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quency, then the nonlinear function has the form
flo, k)= [ Wk k) g, k%0) - g° k', k%0%) [24Q° (8a)

where dQ* =siné® d*dy’ is the element of solid angle in
the scattered direction.

If, at the same time, the measurements are made
over a cone Kt of mc1dent directions (6%, @) but still a
single frequency, then

f(u):fK flo, k') doi (8b)
where d§¥ ésine"déid(pf

As pointed out by Wolf 2 such measurements can be
made in the near field of the scatterer. In particular if
the direction of the incident wave is in the positive x; or

=0 direction, the scattered field measurements over
the hemisphere 0 < 95< 7/2, 0 < ¢° < 27, can be obtained
from near field measurements over the plane x,=d
where the region D or the scatterer lies in the half-
space xg < d. This result is obtained by use of the plane
wave expansion

exp(ikix —yl) ik

Ix~—yl
/f explik[p(x, ~v ) +¢lx, - v5)
F P =g = v T = p? =g
X dpdq
where (1~ p? = g/ 2 =i(p? = g = 1)V/2 if p? +¢*>1. When

this is substituted into Eq.(4), the scattered field on the

plane x,=d has the form

w =5

X/]‘ exp{ik|px, + qxza (1p P ~)r{/2”° JAC

where
A(p,q):%fDexp[—ik(pyﬁqyﬁ(l—pz—qz)‘/zya)]

Xo(y)InEluly )dy .

The Fourier transform of #® with respect to x; and x,
yields the coefficient A(p,q). If the evanescent wave
contribution (p® +¢# > 1) is neglected in the expression
for A(p,q) and only the homogeneous wave contribution
(p* +¢° <1) considered, it is seen that on setting
p=sin® cos¢s, q=sin® sing® that A(p,q) becomes
gkt k%), where 68 =0, The scattered directions are
restricted to the hemisphere 0 < 65 < 7/2 Since the co-
efficient of v, namely (1 - p? - ¢%)'/? is positive.

MINIMIZATION OF f(v/

The inverse problem has now been formulated as a
minimization problem, to find the real continuous func-
tion on D which minimizes f(v}. The Banach space
C, (D) of real continuous functions on D will be employ-
ed. Since the assertion that the set {vlve C,(D),

@) = f(v))}, where 7, is some given function in Cy(D), is
bounded, cannot be made, a constraint will be imposed
on the problem. Namely, f(¢) will be minimized sub-
ject to the condition

ol < o,
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where a >0 is some given large constant assigned a
priori. The norm employed here is the usual maximum
norm. For future references the following set will be
defined

S={v|ve Co(D); llvll < a}.

Since S is a closed convex subset of the nonreflexive
Banach space Cy(D), the conditional-gradient ap-
proach®? will be used to obtain sequences {v"} which
minimize f(v) where v, will be in a dense subset of S,
namely a set of equicontinuous functions in S,

With the above approach in mind, the various
Gateaux derivatives will be required. Denote the
Gateaux derivative of f{v) at v by f'v. Hence for v& S
the corresponding linear functional has the value

fo(h)=lim S+ th) - flv) ”;) =)

t=u

for every 23S, If the corresponding Gateaux derivative
of g(ki k*;v)is denoted by g'v(ki,k?), it then follows

flo=2 Re( » wiki, ks)a gkl kg vlki, kf)) 9
i=1
or
f'v=2 Re ([ K'g;(’f Wik, k?) ag k7, k%) ¢ 'v(k, ks)
Xdrzidm) (10)

according to whether f(v) is given by Eq.(7) or &q.(8),
and
aglki k) =gkl k*:p) — gf(k! ks 0%). (11)
To obtain an explicit expression for f'v, note that
from Appendix A

gkt k%0,) — gkt k%;0,)
k2
=T (L’ = v )nu(kt v, )ul ~ k*, v )dy,

where u(k, v) represents the total field (incident plus
scattered) produced by an incident wave in direction k
upon a scatterer whose material properties are given
by ». It thus follows that for v and #<S

g'v(ki,k?) f GK!, k*0)h(y)dy, (12)
where
. k? ,
Gkt k)= e n{y )k, v)u(-ks p): (12"
hence f'v(h) has the form
£ oln) :_[D Flo, ph(y)dy, 13)

where

F(v,y):ZRe(éW

1=1

(ki k$)Agll, kDG ko )) (142)
or

F(v,y}=2PRe (f,(i® P [ Wik, ks)agk? k*)G(k!, kS;0)

XdQ‘dﬂ“) (14b)

Since the plane wave exp(fk’*x) is an H-differentiable
function, and the integral operator in Eq.(4) maps
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bounded functions into H-differentiable functions, the so-
lution u(k?, x) will be an H-differentiable function, Thus
it follows that since 7(y) is H-differentiable, vanishing
on the boundary, G(k!, k%v), hence F(v,y), will be an
H-differentiable function belonging to Cy(D),

In general f(v) is not a convex functional on the set S,
hence there will be more than one value of v that gives
a local minimum of f(v). A unique value of v yielding an
absolute minimum is not to be expected since in gene-
ral the given set of data is not sufficient to uniquely
specify the value of v. One® requires the values of
gkt p%;0*) for all values of k* and k* (0 < k| <=). In
addition, errors in the data may obscure the true abso-
lute minimum.

If 7 is defined as follows

v=min f'v(h), (15)
rES
it is shown? that a necessary condition for » to give a
minimum is that

v=F"v(v). (16)

Provided that » is not on the boundary of S, then condi-
tion (16) reduces to the familiar condition

fle=0, (16"

Points v of the set S for which Eq. (16) is satisfied
will be called stationary values. These stationary va-
lues are generated by the conditional-gradient iteration
process described as follows.

Starting from v, a uniformly continuous function, a se-
quence {vn}, where v, S is generated in successive
steps. In particular, once v, is obtained, a direction of
descent and then amount of descent is chosen to get
v,,.,- But, to satisfy the constraint, the amount of des-
cent must be restricted to stay within the set S To be
precise, given v, one finds an kS so that

d .

a7 St th) | o=1"v,(0) = [, Flo,, )iy ay
is a minimum, From Eq. (16) it follows that the mini-
mum is given by v,. Since F(v,,y)= Co(D), it is obvious
that v, is an H—d1fferent1ab1e functlon in Cy(D) given by

~ Flv ,y)

) e By 7

= TG, vl an
Not only has the direction of descent, but also the maxi-
mum possible amount has been chosen. The proper
amount of descent is now chosen by minimizing the
functional

P (a)=f(v,+a(v, -v))

for 0<as<1. Since f(v) is not necessarily convex, the
minimum point may be at the end point a=1, or there
may be more than one minimum point in which case the
smallest value is taken. Let the chosen minimum be a,;
then set

Vo =v,ta @, ~0). (18)
It then follows that
flo, ) <fv,);

hence {vn} froms a relaxation process.®

V.H. Weston 55



It is seen that {y } is a sequence of equicontinuous
functions on S; hence it belongs to a bounded condition-
al compact set and will have a converging subsequence.
In order for such a subsequence to converge to a sta-~
tionary point of f(v), the following Lifschitz condition
for the subset of equicontinuous functions in S (see Ap-
pendix B) will be used:

W7 v, = froglt < Lilv, — w,ll.

It follows from the results in Appendix B that the
Lifschitz condition, with slight modification of L, can
be applied to include the limits of a finite number of
converging sequences of equicontinuous functions.

By appropriately modifying the corresponding theo-
rem in Ref.4 to take into account that although the set
S is not weakly compact, the sequences {vn} belong to a
bounded conditionally compact set, one has the follow-
ing:

Theovem: The sequences {v,}, {7} have the property
that

lim f'v (v, ~2,) =0

ne o
and the cluster points of {v,} are stationary points of
fw)onS.

The above procedure requires the exact determination
of a,. However, this step may be relaxed and the a, can
be chosen to satisfy the following:

’ Y — oy
a,=min |1, y LACHC (11——ﬂ—~ Uz) 19)
® v, =T
where 7, satisfies the inequalities
€ <y,<(2-¢)/L
with 0 <¢, <2/L, 0<e, <2~ Le,.

With appropriate modification of proof in Ref.4, it
can be shown that the cluster points of the sequence {v }
with these values of a, are stationary points.

The ahove procedure for obtaining stationary points of
flv) involves the direct scattering process For the case
where f(v) is given by £q.(7), one needs to compute
F(v,,y) and the appropriate values of G(ki,k$;v,) for
!=1,2,...N, in order to compute v, from »,. But from
Eq. (12¢) this involves finding the solution of the direct
scattering associated with plane waves incident upon a
scatterer with v=v_, for a set of incident propagation
vectors given not only by ki, but also - k§ for
1=1,2,.. . ,N.

In actual practice one may want to discretize the pro-
blem or use approximate direct scattering models. As
an example of the latter, one could assume that p*(x) is
a perturbation of some known value v,{x) e C,{L). In this
case one could place a restraint on (v~ v,) so that the
appropriate Neumann series of the perturbed integral
equation converges. In this case one could work in the
real Hilbert space of square integrable functions on D,
and have a constraint of the form E?|lv — vll,|| K,ll, <1,
where the norm |} |{, is appropriate norm for the Hilbert
space. K, is the integral operator associated with the
unperturbed equation, the kernel being given by the
Green’s function. In the next section the linearized ver-
sion of the perturbation approach is reexamined.
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LINEARIZED SYSTEM

The linearized approximation’ is achieved by treating
the unknown quantity v(x) as a small perturbation of a
known quantity v,(x), and retaining only linear terms in
the resultant perturbation expansion. In particular, if

v(x) = v, (x) + 50, (%),

where 0'is a small parameter, when the corresponding
expansion for the scattered field

wS(x) = u (x) + 6ug + O(6?)

is substituted into Eq.(2) and coefficients of 6 up to the
linear terms are equated, one obtains the two equations

Aus + k0, (X) + 1]ug = - PPro ()t
o + Ko ®) + 1w = - k2, ()0 +ut ].

The normal approach is to invert the second equation
using the Green’s function associated with the operator
on the left-hand side of the equation. The resultant ex-
pression for the perturbed scattered field appears as a
linear functional on v,{x).

The form of the scattered field for the linearized sys-
tem can be directly obtained using the Gateaux deriva-
tive of g(k!,ks;v) at v,. Retaining only the first two
terms in the Taylor expansion about v,, one obtains

glki, k50, + 6v,) ~glk!  KS;0,) + 270, (8v,) . (20)
If the difference between the measured scattered field
amplitude and the computed value corresponding to the
unperturbed value of v is set equal to b(ki k), i.e.,
bk, k) = ¢ (k' ko50*) - glk? ks 50,) (21)
and v, in Eq.(20) is replaced by v ~1v,, yielding
g8 k50) = gk ks30) + [, G kS5 0,) (v = v,)dy,
the nonlinear functional f(v) corresponding to Eq.(7) has
the following form for the linearized system:
o) =25 Wik, k)
I=1
. 2
x| [ Gl k$;0,) (v ~ vo)dy ~ b(ki  ks) | (22)

A similar result holds for the linear version of Eq.(8),
namely

S0 = Fei g e | W )] foG 0 K000 - vo)dy
-b(k k) [2dQtaqs. (23)

It can be shown that these expressions for flv) are
convex functions on the set S, i.e., if v,,v,&5 and
v, #v,, then

A(BgR) = ) + 2wy,

This fact produces the following result.*

Theorem: The sequences {v,} generated by the condi-
tional gradient iteration process for the functional f(v)
given by Eq.(22) and (23) has the property

lim f(v,) =min flv).
n~ o ve §

The stronger result is obtained for the linearized ver-
sion since f(v) is convex.
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Another approach to the linearized version when a fi-
nite number of discrete measurements are made, is to
note that the nonlinear functional given by Eq.(22) has a
minimum when

[, 6, k$;0{v ~ vo)dy = b(ki,k3), I1=1,2,... N.

Combined with these N linear functional equations is
the constraint

mag lox)| <.

The system can be transformed into a system of lin-
ear functional equations with positive constraints. Such
a system has been treated by Sabatier®® who discre-~
tized it by breaking the region D into cubes and hence
reduced it to a linear algebraic system which could be
solved by the simplex method. It was shown that the
maximum “useful” numbers of subdivisions that could
be employed was related to the errors in measure-
ments, etc.

BORN APPROXIMATION

An important application of the linearized version
occurs when the frequency is sufficiently low or else
the scattering medium is sufficiently transparent so
that the Born approximation (the retention of the lead-
ing term only in the Neumann Series solution) may be
used for the direct scattering problem. Here, as point-
ed out earlier, one can employ the real Hilbert space of
square integral functions on D, thus the continuity con-
dition on »(x) may be relaxed, and ¢(x) is required only
to belong to ;2 (D). Thus the factor +(y) will be sup-
pressed.

Since the Born approximation corresponds to the lin-
earized version with ¢,=0, and

gk ,kS0,)=0,
) »2 A
Gik? ,ks;vo\):%—exp[i(kt -k x ]’

it follows that the linearized versionof the nonlinear
function f(»r) given by Eq.(23) has the form

fv) 2.1',@,(3‘1“W(k" k)G v~ g (ki ks 0%) |2diags, (24)
where
kb2 4
gh:ﬂﬂexp[f(k' -k*) - ylhly)dy, (25)

If the actual material properties of the scatterer is de-
noted by v*(x), then the measured scattered far field
amplitude in the Born approximation has the form

¢ (i ko50%) =G v + e (k1 ko %), (26)

where the error term is a linear combination of errors
due to measurements, plus the error in using the Born
approximation (the contribution of the remaining terms
in the Neumann series).

The special case where the measurements are made
at all directions of incidence and scattering will be con-
sidered At the same time the weighting factor will be
specified as follows:

; 1 ;
Wiki ks) =55 ([k‘ I2 ~ki. ks)/2 27
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To simplify analysis, set

kRx,y)= (;’E;)zf/exr)[i(k" - k%) (x - y) Wik k®) a2t a®,
(28)

where W is given by Eq. (27) and the integrals are over
the unit spheres, and let / be the linear operator on L
prescribed as follows:

[h= [, k&, y)hy)dy.

If one then sets

2
w(x):Re% fexp[-i(ki - k) - x|gf (&, k®;0*)

X Wik kS )aQiaQs, (29)
it can be shown that expression (24) reduces to
Fe)=(, ] v)=2{v,w) + 1, (30)

where f, =] [ wW(ki ko) g (ki k%r*) 12dQia0s and (, ) is
the inner product associated with the real Hilbert space
L3(D).

For further analysis the properties of the operator /
have to be obtained. In expression (28) change the vari-
ables of integration from the spherical angular vari-
ables (8, ¢') and (¢%, ¢°) to the spherical polar vari-
ables (p, 8, ¢?) and (g, &7, ¢?) by the relation

ki —ks =2q,
kKi+ks = 2p,
where q, p are the vectors of length ¢, p and directions

given by (87, ¢?) and (6%, ¢?) respectively. It then can
be shown that

B2 [
kR(x,y) :4—77"ff exp(i2q - x -y} |¢2ady,
0

:Zi%[[[ expli2q- x-y)HE -q)dg (31)

where H(x) is the Heaviside step function. It is obvious
that k(x,y) is a real symmetric kernel.

Since it follows that

<¢,r¢>:;}§fff]f exp(i2q- X p)ds|
" D

XH(]" - ’/)”q7

it is seen that / is a nonnegative operator. Since

o) = [expl2iq X)X )ex is an analytic function in each
of the components of the vector q, it follows that !(q)
cannot vanish identically on the ball {q! = & unless
@(x)=0, a.e. Thus it is seen that 7 -! exists, but the
range space of 7/ is not closed.

The well-known results of Kantorovich'® may be
used. If w(x) is in the range space of the operator 7,
then the steepest descent iteration process applied to
the functional of Eq. (3) in the real Hilbert space yields
a minimizing sequence

lim f(e) = f(2)
prigioess
where ¢* is the solution of

Jot=w. (32)
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Note that the results in the previous section using the
conditional-gradient method in the Banach space C (1))
apply to this and will yield the same result. If one
works with Eq. (31) directly rather than the functional
(30), other iterative processes may be used.'!

From Eq. (26), (28), and (29) it is seen that

wx)=/v*+u,

where «* is the contribution due to the various sources
of errors. Thus if the error term is in the range space
of 7, i.e., w*=/¢c, then Eq. (32) has the solution

Ptk €.,
and hence one can determine ¢* apart from the errors.

It is of interest to compare this result with the the-
oretical limit that can be obtained by side band hologra-
phy. It is shown by Wolf® that the combined measure-
ments of holography (taking all directions of inci-
dence) yield the quantity Jo*H(k — [ £]), wheio H is the
“lraviside step function, and J* is the Fourier trans-
form

Frr= [Lexp (it  x)o* (x)dx.

From Eq. (31) it is seen that this is just the Fourier
transform of /r*. Here the results derived above indi-
cate that the processing of data will yield better
resolution.

COMMENTS

The nonlinear inverse scattering approach considered
here has the advantage in that it is capable of utilizing
incomplete and diverse scattered data, is stable with
regard to errors, and includes many simplified models
(e.q., Born approximation) as special cases.

It would be useful to investigate the discretized ver-
sion of the nonlinear approach given here, as well as
the optimum choice of the weighting factors. In addi-
tion it would be of interest to extend the analysis to
obstacle scattering (as characterized by the Dirichlet
or Neumann boundary condition on a closed surface) as
well as the corresponding vector problems. In some
cases, it may be better to formulate the problem in the
time domain as opposed to the frequency domain given
here.

APPENDIX A
If K is the integral operator such that

NS exp(iklx~yl)
K= /D X7l uly)dy,

thenr when r =v (%) C (&), Eq. (14) can be expressed in
the form

u, =ut ¥ Kneu,

where u = exp(/ki - x) and y, is short-hand notation for
the solution a, = u(k?, »,). It can then be shown that

gy = vy06) =ne, K (e, ~ veu,) i, = v)u, (A1)

Since the operator nv K is the complex conjugate of the
adjoint operator of Knr,, it follows that Eq. (A1) can be
inverted to give

(v, = vyty) = U= 1o, K) (v, — v,)u,
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and
[ exp( = iks * X) (v, 0, — vu,)nax
= [y exp(=ik® * X){I - 1o, K) ~*n (v, - v,)upux
= [pn(v; = v)uy (I =IKno,) ~*exp (~ iks * X)dx
= [ p 10y = v)ugu( k3, v, )dx.
It thus follows that
glki k%;0)) ~ g(ki k%;0,)
p2
= ‘H./L; (v, = vo)nuki, v)u( -k, v Jax.
APPENDIX B

Using the notation of Appendix A, it follows from
Leis! that, for v=S,

WU =Kno)- Ul < Clv).
From the relation
N =Kye) = (I~ Kno,)

- HKIC* e Mo, = vl
1= Cl K e, ~ 2,ll]

it follows that (/ - Kne¢)-' is a continuous function of v.
Let

$"={r|v=$; v equicontinuous}

then S’ is a bounded conditionally compact subset of S.
1t follows that, for v=8’, the inverse operator is uni-
formly bounded

1 - Kne) i< M.
Hence, for v<=S’, one has
Helki o)l <M
and from the relation
wy ~ tty = (= Kney) " HIKN) (04— vg)ut,
that
Hoty = )l < MPTK e, ~ vyl -
From Eq. (12°) it can be shown that for »,, r,c5’
Ne& ks, ) = G& K, 0,) Y

fe? s i i
< g5 [hel=%, )l v,) =l 0l

+ el oM Nzl = k5, 0} — ul = k8, 000}

kz
< g MK e, = vl

From expressions (9), (10), and (12) it can be shown
that, for u,, 0, in the set S’, there exists a constant L,
such that

WFy,v) = Fly, vl = L llo, — vl

from which follows the Lifschitz condition
7oy = F ol = Lilv, = wyil

for some appropriate constant‘ L.

Note added in proof: Stronger results can be obtained
by adding the term \[,(r — 74)?dX to the nonlinear func-
tional f(r). The conditional-gradient process would then

V.H. Weston 58



59

yield only stationary solutions in a neighborhood of v,
an initial estimate,

iR, Leis, Vovlesungen ubev pavtielle Diffevential —Gleichungen
Zweiter Ordnung (Bibliographisches Institut, Mannheim,
1967).

’E, Wolf, “Three-Dimensional Structure Determination of
Semi-Transparent Objects from Holographic Data,’”” Opt.
Commun. 1, (4), 153—56 (1969),

3J, W, Daniel, The Approximate Minimization of Functionals
(Prentice-Hall, Englewood Cliffs, N.J,, 1971),

4V, ¥, Demyanov and A, M. Rubinov, Aproximate Methods in

Optimization Problems (American Elsevier, New York,
1970).

J. Math. Phys., Vol. 20, No. 1, January 1979

SL.D. Faddeev, Itogi Nauki Tekhn,, Sorremennye Problemy
Math, 8, 89—180 (1974).
®M, M, Vainberg, Variational Method and Method of Monotone
Opevators (Wiley, New York, 1973},
V.G, Romanov, Integral Geometry and Invevse Problems for
Hyperbolic Systems (Springer~Verlag, Berlin, 1974),
8p, C, Sabatier, “Positivity Constraints in Linear Inverse
Problems,” Geophys, J.R. Astron. Soc. (G.B.) 48, 415~41
{1977).
*P,C. Sabatier, “Positivity Constraints in Linear Inverse
Problems, II Applications,” Geophys. J.R. Astron. Soc.
(G.B,) 48, 443-59 (1977),

101, v, Kantorovich, “Functional Analysis and Applied Mathe-
matics,” Usp. Mat, Nauk, 6, 89—185 (1948).

1w, J, Kammerer and M, Z, Nashed, “Steepest Descent for

Singular Linear Operators with Non~-Closed Range,” Applica~
ble Anal, 143—59 (1971).

V.H. Wesion 59



Completely integrable systems and symplectic actions?
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We study results on a class of completely integrable systems, for instance, with Hamiltonian

Hx, ) =D ] +20,50—y) 7 a0 x2,

using quotient manifolds induced by symplectic group actions, which enables us to integrate the systems
and understand their complete integrability. In addition, we give a natural interpretation for the scattering

maps associated with these systems.

1. INTRODUCTION

In this short note we explain the results of “Some
finite dimensional integrable systems and their scatter-
ing behavior,” by the author, and of Refs. 2—4, in
terms of the abstract machinery set up in the paper of
Kazhdan, Kostant, and Sternberg, entitled “Hamiltonian
group actions and dynamical systems of Calogero
type,”® which explains systems first discovered by
Calogero and Marchioro,® and first discussed by
Moser, '

Briefly, the systems to be discussed have the proper-
ty that their equations of motion can be expressed as
matrix differential equations which can be easily inte-
grated, and moreover, the integration process is seen
to occur naturally in a space of much higher dimension-
ality than the systems in question. The systems to be
studied are thus interpreted as quotient systems of the
much larger systems, where the quotienting out process
is performed by a symplectic action of a group.

The process of quotienting out in mechanics, such as
using center of mass coordinates, i.e., ignoring the
position of the center mass, is indeed a common prac-
tice. We point out that usually quotienting out, or ignor-
ing certain data, is a way of ignoring the symmetries,
or integrals of the system, so as to arrive at some
basic equations to study. Here the quotienting out does
not really involve the integrals, but enables us to pass
to the ultimate system to be studied. The integrals are
in fact generated in a much more trivial way, for in-
stance through the use of natural Lagrangian submani-
folds and simple canonical maps, which of course makes
use of the quotient structure. In addition, the so-called
scattering maps of these systems have a natural inter-
pretation in this context.

A special case of this symplectic quotienting out pro-
cess is the coadjoint orbit construction of Kirillov
— Kostant (see Ref. 8). This construction is relevant in
the n-dimensional Euler spinning top problem of Arnold,
as was observed by Dikii in Ref. 9. In addition, the
Toda systems and their generalizations, as well as the
Korteweg— deVries equation and its generalizations
have orbit symplectic structures for their relevant
phase spaces. We refer the reader to Kostant,'® Mum-

Il)S'ponsored by the United States Army under Contract No.
DAAG29~75-C-0024 and the National Science Foundation
under Grant No, MCS75-17385 AO1.
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ford and Moerbeke, !* and the author!? for the former
case, and Ref. 12 for the later case.

In the first section we merely summarize the abstract
machinery of Ref. 5 of use in the discussion, referring
the reader to Ref. 5 and 13, and the paper of Marsden
and Weinstein,® for a fuller discussion. We then discuss
the results of Ref. 1, which entails referring to Ref. 1
frequently. Finally in Sec. 7, we discuss the results of
Olshanetsky and Perelomov,?'? in the above quotient
framework.

2. THE SYMPLECTIC STRUCTURES

We summarize and briefly discuss the necessary ab-
stract machinery needed to discuss Ref. 1. Let (M,w,G)
be a triple, with M an (exact) symplectic manifold with
nondegenerate closed 2-form w =d7, and G a Lie group,
with elements g, which acts on M with an exact symp-
lectic action. If / is the Lie algebra of G, with elements
denoted by ;:r; then the action of .G associates with each
& the Hamiltonian vector field &, and the Hamiltonian
function f( ) = - 7(F)( ), vields a Lie homomorphism,
i.e.,

{fz'l’fi'z}:f[“;h‘:?] [, ]the bracket in/,

where { , | is just the usual Poisson bracket, i.e., if

2.1)

Xpdw=df, then X, (f)=w(X, ,X,)={f,,f}. (2.2)
We define the moment map of Souriau,
& :M—-L*, by <I)(m)(£{):f;(m), (2.3)

with L* the dual of / . The group G acts on itself by con-
jugation, hence on / by the linearization of conjugation,
Ad, and on /.~ by (Ad)*; and its easy to see that {2.1) is
just the infinitesmal, and hence equivalent version of the
relation of equivariance,

Pog=(Adg~)*-d. (2.4)

We then form the orbit of o = /* under (Ad)*, ©,, and
assume V=9"1(0,) is a manifold. It is easy to see V is
a coisotropic manifold, i.e., (TV )¢ (TV,), for all
xc< V, with | denoting perpendicularity with respect to
w, and we can thus form S = V/[leaves of the foilation
induced by (TV)!], taking S to be connected and assum-
ing it to be a manifold. Then as a direct consequence
of (2.4), it’s not hard to see that S is a covering space
of 8/, as follows:

S9!, x0,, (2.5)
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where /G, means we identify elements x,yec M if they
lie on the same G, orbit, with G the isotropy group of
a, i.e., the connected subgroup of G which fixes ¢ by
its action on M. Incidentally, this shows S is a mani-
fold precisely if ©/, is one. By the coisotropy of V, and
the transitivity of G on the fibers ©,,w induces a
symplectic structure on ©),w, (i.e., we shall tacitly
assume w, is nondegenerate), where{ , }—~{, },isa
homomorphism. The structure (6}, w,), G shall be our
arena of activity. ‘

We note that by (2.1) and (2.2), functions in M which
are G invariant induce Hamiltonian flows on M which
pointwise fix the image of M under &, and hence they
induce Hamiltonian flows on e;. In addition, such func-
tions, if they are in involution with respect to { , } on
M, are, via the homomorphism w— w,, automatically
in involution in ©/, thought of, by their G invariance,
as functions on ©,. This ends our discussion of quotient
structures.

In preparation, we discuss some M’s which shall
come up in the examples, '

Let F be the linear manifold of X matrices with
complex coefficients, and T*F==% be the cotangent bun-
dle of F, where we shall identify 7% F~ F X F via the
bilinear (X, ¥} =tr(XY). Then the complex symplectic
2-form w, naturally associated with T*F is

w=2dX,;AdY ;= (dX,dY),

or alternately, we write Hamilton’s equations, with
Hamiltonian H=H(X,Y), as

X=H,, Y=H, (2.6)
where [Hy), =0H/3X,;, etc. If we restrict w to
M, =T* ={(X,Y)|X=X*Y =Y*}, 2.7)

where * denotes taking the Hermitian adjoint, i.e., /

is just the self-adjoint matrices [which we shall identify
with the Lie algebra of the unitary group G=U{n, C)],

w yields a real symplectic structure, with Hamilton’s
equations remaining as given in (2.6), where it is under-
stood that H is real.

It is interesting to map &— & via
X‘ b'e l |z,

THy| T xy| T e,

) (2.8)

and one computes
Hy :HZ1 +tYH, , HY:H22X,

Z,=X=H,, Z,=(XY) =H,Y-XH,.

Consequently, we may write Hamilton’s equations in
(Z,,Z,) coordinates as

Z,=H,2, Z, :[HZZ,ZZ] -ZH, . (2.9)
Let us now restrict 7 to T*U(xn), i.e., we identify
M2=T*U(ﬂ,0)5{(21,22)12122‘ =1,2% :Zz}’ (2.10)

and restrict

=

T ity =

61 J. Math. Phys., Vol. 20, No. 1, January 1979

Note 7 is invertible, and of course we may just as well
identify 7-1(M,) with T*U(n). In that case, since by the
pairing ( , ),X, Y are the usual dual coordinates of
T*U(n), (2.9) restricted to M, precisely yields Hamil-
ton’s equations for the natural symplectic structure of
T*U(n). We must however put in the factor i due to our
identification of the Lie algebra of U(x) with self-adjoint
matrices, or equivalently we may think of time as
being purely imaginary in (2.9). We omit the necessary,
but easy verification that (2.9) restricted to M, auto-
matically perserves M,, which is sufficient to insure
the restricted w is symplectic.

3. EQUATIONS OF MOTION FOR THE SIMPLEST
SYSTEM

We now apply the discussion of Sec. 2. We shall let
(M,w,G) of Sec. 2 be (M,,(dX,dY),U(n)) of Sec. 2.
Since M,=T*/ ~/ X/, / the Lie algebra of U(n), U(xn)
acts naturally on / via Ad, i.e., by conjugation, which
extends to a Hamiltonian action on T*/ :

U:X,Y)—~ (UXUL,UYU"Y), Uec U,
of which the linear version is
U, 7)—~ (U,X], [0, YDe T™, 4.y
Hence, by (2.3), and the above
& (X, V) = f3(x, V) =([U, x], ) =([X, Y], D),
and so by the identification of / with / * through { , )
a,=9"Ya)={X, V)|[X, Y]=a}, (3.1)
and we shall once and for all pick ¢ such that
[a],=i1~6,), i.e., a=i{v*2 o},

with v R", v=(1,1,1...,1)7. Note that the isotropy
subgroup G, ={U|U x U =q}, and we shall define the
effective reduced subgroup

G, ={U| Uv) =2}, with Lie algebra / ,={B|B(v)=0}.
(3.2)
In Ref. 5 it is shown by a simple linear algebra argu-

ment that if [X, Y]=a, we can always find a unique
Ue G, such that
UXU-' =diag(x), x5, ...,x,) =X, x,<x,,, all i,
[UYU-1],, =5,,y, +i( = 6,)(x, - x,)* =7 (3.3)

and hence 0, =&"'(a)/ G, is effectively coordinatized by
(%5 000y %,), 5.0 o, 9,)) = (x,v); and moreover it is
shown in Ref. 5, by a local argument, that

w"wa:iijldxi/\dyi’ i.e., (x,j’)

(3.4)

form a set of canonical coordinates. Hence in this case,
O, and thus S is a manifold (see Sec. 2), and w, is
nondegenerate, and hence symplectic,

We now wish to find functions on 8!, and by the dis-
cussion in Sec. 2, functions of the form

H=HX,Y)=tr[P(X,7)], (3.5)

with P(*, °) a noncommuting polynomial in its arguments,
will certainly do. If we take (3.5) as a Hamiltonian
function on M, then (2.6) yields for Hamilton’s equa-
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tions,
X=n{X,7), Y=h(X,7) (3.6)

with #,(,), i=1,2, polynomials in their arguments,
uniquely determined by P(*,°). As mentioned,
H=tr[P(X,Y)] automatically can be t hought of as a
function on 8, in fact via

Wx,y) =tr[ PG, 7)];

and we wish to determine the analog of (3. 6) for the
system on 6/ with Hamiltonian (3.7), or to put it another
way, we shall determine how (3. 6) transforms in 9/.

3.7

So assume we are given initial data for Hamiltonian’s
equation with Hamiltonian %(x, y) in @/, which corre-
sponds to (¥(0), 3(0)), which we may identify, and thus
set equal to, (X(0), Y(0)) in M,. Under the Hamiltonian
h(x, ), (x(0), 3(0)} — (%(¢), (¢)), and correspondingly
under the Hamiltonian H(X, Y), (X(0), Y(0)) — (X(2), Y(2)).
By the previous remarks, we must have

X(O=URHU?, Y)=UFHDU?, U=U@), {(3.8)

with U(t) e G, [see (3.2)] uniquely defined, as the H(X,Y)
flow in the big manifold M, descends to the &(x, y) flow in
the little manifold @/, through quotienting out via G,.
Define B(t)c / , [see (3.2)] by U=- UB, and so by (3. 6)
and (3, 8),

X =UsTU™ =h,(X, Y)=Uh,(%, )U™,
where 6% =¥ — B, ¥]; and so we have

85X =N, (X,¥), Oy=h(X,¥). (3.9)
As a consequence of Hamiltonian’s equations on o/,
x=(3/3x)h(x, v)], v =~ (3/3y)[h(x,y)], and thus we see
how (3. 6) is transformed in Q). Note that from the
definitions of 6, (3.9), and B(») =0 [see (3.2)], we can
immediately compute the unexpected functional depen-
dence, B(t)=B(x(t), ¥(t)), since X is a diagonal matrix.

We specialize to the case H=H,=tr{f(¥)], for which
we compute [see (3.6)] (X, Y)=f"(Y), h,=0, and thus
conclude from (3, 6) and (3,9)»

X=f(Y), Y’'=0,
5% =/"(7), 67 =0.

Since (3. 10) is immediately solvable, we have in fact
solved (3.11) by the use of (3.8).

(3.10)
(3.11)

We also note that since the H ,’s clearly are in involu-
tion on My, being function only of Y, that by the homo-
morphism w —~ w,, the hys, hy= tr[f(»)], are in involu-
tion on €/, and in fact are generated by n independent
functions k' =tr((3)], j=1,2,...,n. Thus & =tr(3y>?)
gives rise to a completely integrable Hamiltonian sys-
tem,

4. SCATTERING MAPS
Upon inspection, one observes that the map
n:(X,Y)=(Y,X), 1],,:8, =8, [see(3.1)], (4.1)

is a canonical map with multiplier -1 in M,, and hence
so is its projection 7, in 9/, since w —w, is a homo-
morphism. This map, 1,, is precisely the scattering
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map for system (3. 11), with f(s)=3$s?, which is dis-
cussed in Ref, 1, Theorem 6, as was observed by J.
Moser (in a personal communication), More precisely,
in the above case, (3.11) with f(s)=3s?, one shows the
time evolution of the system is given by

(%, y)=(gt + p+0@t™),p+0(?)),
with
1, + (x(0), ¥(0)) ~(q, p)-

Similarly one defines the /4 rotation map

f:X,YV)—-21(X+Y,X~Y), ﬁ!Aa:Au——A_a, (4.2)

t =+ o,

which is easily seen to be canonical with multiplier -1
on M, (here one uses that X, Y are Hermitian), and the
corresponding canonical projection, ﬁ,, on 94. X afx, v)
= 3tr(5* - ¥*) in (3.7), then the time evolution of the
system (3.9) is given by

(x(), 9(1)) = 27172 X (g*e** + p*ett, gre*t — pe=t) + O ('),
t—t

with
7l,(x(0),¥(00) = (g, p).

This is shown in Ref. 1, Theorem 4. Moreover, as one
easily checks

n=n°p°ft, p:(X,¥V)=(X,-Y),
hence
My=1,° p,0 ',
and by (3.3), py(x,v)={(x, - ).
Note that we have shown, by the time reversibility of

system (3.9), that ,:(q7,p7) —{¢", p*). These latter
statements are shown in Ref. 1, Theorems 5 and 6.

5. TWO EQUIVALENT SYSTEMS

We now investigate the systems on g/, with Hamiton-
ians respectively

hy(x,y) = trlf(x - )],
ho(x, ) = te{f(3(x + 7]+ [x - ¥D}

By the canonical map 7, of Sec. 4, it is only necessary
to investigate case (a), and then via 7j,, transpose the
results to case (b). Also, via the transformation for-
malism (3.8), and (3.6)+~(3.9), it is only necessary to
study the equations on the full manifold M;, rather than
the quotient manifold 9. The formalism says substitute
6 for d/dt, and (x,v) for X, Y), which enables one to
compute the generator B, and solve the equation on the
big manifold, M,, and via (3.8), to pass tothe solution
on the guotient manifold Q.

(5.1a)
(5.1b)

We thus need only study the system on M, with Hamil-
tonian

H,=H/(X, Y)=tr[f(XY)],

and we first show the H/s are in involution. Specifically,
assume

HY = tr[f,(X V)], H® =tr[f,(XV)],
then, taking increments,

SHV =te{f}(XY)-[6X - ¥ + X 8Y ]} + 0™,

(5.2)
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where 0®" means terms of at least second order; and
we have

HP = Y fI(XY), HP =fIXY)-X, (5.3)
etc., for H®, By (2.6) and (2. 2), the Poisson bracket
{, }of HY) H® ig given by [where (4, B) = tr(AB)]

HO H®}=(H®, HP) - HP, HP), and thus substituting
in (5.3), we find

{HY, H®}Y=(Xf], £3X) - (FiX, YD

=tr(fif}XY) - tr(f{ f}XY) =0,
where we have used [f}(XY),XY]=0, and so {H®,H®}
:00

We have thus, through 7, shown the H,’s, H,=H,
=tr{f(3(X + Y]+ [X - Y]}, are in involution, and thus by
the homomorphism w —~w ,, so are the {tr[f(F)]}'s
{trlf3[x+ 5] [ - ¥DIP’s, respectively; and so tr(z¥y7),
tr(3[x+7]-[¥ - 7]), respectively give rise to completely
integrable Hamiltonian systems on g/, as was observed
proven in Ref. 1. This is, thus, the second and more
pleasant proof of that fact.

Now by (2.6) and (5. 3), Hamiltonian’s equations of the
system of (5.2) are

X=f(XY) X, Y=-Yf(XY) (5.4)

and since (XY) =0 as a consequence of [f/(XY), X¥]=0,
we immediately integrate (5. 4) to obtain

X =exp(f’ (X, Y, )t)  X,, Y=Y, -exp(-f1(X,Y,)t), (5.5)
where the subscript o denotes evaluation at {=0. Thus

by (3.9), the corresponding equations on g/, for the
systems of (5.1a) are

oOx=f"(x7)-x, Oy =-3f(Xy), (5.6)
while (3. 8) implies the time evolution of {5, 6) is given
by

diag(x,, %y, . o+ X, M) = Ulexp(f"(X, Y, )t) - X U, ete. (5.7)

The canonical map 7 (5.4), implies the corresponding
equations and time evolution for the system with Hamil-
tonian H, =tr[f(z[X + Y]-[X ~ Y])] are

(X+Y) =-f"(z[X+Y] [X-Y])-[x+7Y],
(X-1)=[X~Y]-fElx+Y]-[X-Y)),
with
{slx+7]- X -1]f =0,
and
(X +Y)=[exp-{tf'(3[X, + ¥ ] [X, - Y, D}] - [X, + Y, ],
(X - Y)=[X, - Y |- [expltf/[X, + Y, ]« [X, - ¥, ],

where the changing of signs { ——¢, comes about because
fj is the canonical multiplier — 1. We now use (3. 8) and
(3.9) to transpose (5. 8) to o/, i.e., system (5. 1b),

in particular concluding

269?=[X_,f']— [f’, y]n 2637:[3—)’./:']-[’:’; ’?]u (5- 9)

where [A,B), =AB + BA, f'=f3{z+7] - [%-7]). Note the
simplicity of (5.8) and (5.9), when f{s)=s. We could
equally well study the systems gotten by “stretching”
X —p+X, in (5.1) and (5.2), which tend to have compact

(5. 8a)

(5. 8b)
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behavior and thus give rise to periodic solutions for u
purely imaginary, see Ref. 1, in fact for f(s)=s,
p=v=1, all solutions are periodic with one and the
same nonprimitive period.

Note that our studying the case H =tr[f(XY)],
h=tr[f(¥)], makes it unnecessary to study the (Suther-
land) case where our manifold is

T*U(n,C)={(U,R)|UU* =1, R =R*},

and our Hamiltonian is H(U, R)=H, =tr[f(R)], with
Hamilton’s equations given by 2.9), (U, R)=(Z,, Z,);

for after the change { —if, we would get the same formal
results as (5.4)~(5.7), including the involution state-
ment, via the map 7, (2.8), where we identify (X, XY)
=(Z,,Z,) with (U,R). We note that the condition

(X,Y)e A, namely [X, ¥Y]=0 is transformed into
[U,U*R]=qa, i.e., R-U'RU=q.

6. YET ANOTHER SYSTEM ON 4,

We now discuss the system of Sec. 6 of Ref. 1.

One may either regard the Hamiltonian of this system
on Q as
hy =tr[2(¥F) + 7], (6.1)
or
By =tr(zXxy2x +Xx), (6.2)

as «, h, differ by a constant. Of course in the full mani-
fold the corresponding Hamiltonians,

H, =h[3(XY)}+ X],
H, =tr[3(XY2X) + X],

(6.3)
(6.4)

are far from identical. Although it is shown in Ref, 1
that (6. 1) and (6, 2) are completely integrable systems,
we shall not show that (6. 3) and (6.4) are completely
integrable systems, in fact we have not been able to do
this,

We shall study both (6. 3) and (6.4) and then relate
them in case the associated differential equations on
9/ have the same initial data. Since the calculations are
so similar to those of Sec. 5, we just give the results.
For simplicity we set XY =Z2. Then with the Hamilton-
ian of (6. 3) we calculate, from (2. 6),

X=2zXx, Z=-X,

and since [X, Y]=a, (YX) =- X, we have s (XY’ X)+X
=e¢,, e, a constant, and thus we arrive at, again using
[X’ Y] =a,

172 _Za-Z=e,. (6.5)

Letting Z = - 2a;'a,, we find &, = $a,e, - 34,a, hence we

have
a a,(0)
_1 = .1 rexpCit, (6.6)
a, @,(0)
0, 1
C,=D|(X,Y)= at¢t=0. 6.7

UXY2X) + 51X, - a/2
For the Hamiltonian of (6.4), we find

Z-[4YX,Z]=—X, X-[5vX,X]=4(XZ+ZX),
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which motivates us to define the derivation 3,
d
5(+)=(+)-[47x,"],
and thus we have from the above,
0Z =~X, 6X=%(XZ+2X), (6.8)

Clearly, if U(0)=I, U=- U(3YX), we have the following
rule of transformations for matrices A =A(f): If
A=UAU", then (d/dt)}'A =U8AU-', From (6.8) we con-
clude, using that 8 is a derivation,

5(322+X)=0, 5(32%-62)=0; (6.9)
hence by our rule of transformation,
122 -Z=e,, e,a constant;
and thus letting Z = - 2a;*d,, we find
= %azezr
i.e,,
a, a,(0)
= . t
()= (6w) et
0, I
C,=D,(X,Y)= at £=0. (6.10)

X2+ 14X, 0

We now consider the case where the X(0) of both sys-
tems are the same in 9/, and moreover x,(0)>0. Then
since both Eqs. (6.3) and (6.4) are the same as seen in
9., they both must have the same long term behavior
of X as is projected down into ©7. In Ref. 1, Sec. 6, it
is shown that system (6. 3) and (6. 4) have the following
long term “‘scattering” behavior,

(logx, xy) = (£xt + B* + O(F!), tx + O(F2)), t—= o,

where logx =(logx,, ..., 108x,), xy=(XVy, ..+, %,Y,). By
arguments in that same section, it’s clear that the spec-
trum of C,, or alternately C,, precisely carry the data
A, and hence we must have

D\(X,Y)~D,(X, Y),

where ~ denotes spectral equivalence. By (6. 7), {6.10),
and (3. 8), this implies

D\(ZF)~ Dy(%, 7). (6.11)

Moreover it follows from (6.5) and (6.9) that D,(X, ),
D,(X, Y) are isospectral matrices of the differential
equations (6.3 and (6.4) respectively, and so in parti-
cular D,(x,¥), Dy(%,y) are for the (6. 1) and (6.2) flow;
and thus we arrive at
D,(x(0), 7(0)) ~ lim D (X(t), 5(£))~ lim Dy(¥(¢), 3(#)) . (6. 12)
te oo [ g
This yields the scattering behavior of system (6. 1) and
(6.2) as discussed in Corollaries 11.2, 11.3, of Ref. 1,
which essentially maintains that the system scatters as
if it is completely decoupled, and is just constrained to
maintain a fixed order on the line.

7. THE GENERALIZATIONS OF OLSHANETSKY
AND PERELOMOV

We now apply the considerations of Sec. 2, and Ref.
5, to generalizations of the Calogero— Moser systems
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in the context of complex semisimple Lie algebras as
considered by Olshanetsky and Perelomov.?:®> We shall
recover their results along the way. They actually work
in the setting of real Lie algebras, but the natural set-
ting for a full analysis is the complex Lie algebras and
their real conpact decompositions. We remark that we
shall make seemingly stronger hypotheses than they do.
As this section is in effect an abstraction of the work of

the previous sections, we shall tend to sketch arguments
in order to avoid unnecessary redundancy., We first need

to enumerate some well-known facts about Lie algebras
which we mention without proof (see Ref. 14).

Let / be a semisimple Lie algebra over C, the com-
plex numbers, with connected Lie group G and with
(nondegenerate) Killing form (X, ¥)=tr{adX adY). Note
{+, ) has the following important properties (where
[+, -] denotes the Lie bracket):

X, Y, z]y=(v[z,X])=(Z,[X, Y]),
(AdX,Ad, V) =(X,V), gcG.

Let # be a Cartan subalgebra of /., with A the corre-
sponding set of nonzero roots, and A the subset of
roots which are positive with respect to some ordering.
Pick root vectors E,—/®?, /* a root subspace corre-
sponding to the root 8 ¢ #*, having the following proper-
ties:

lEB1 E-s]:H(B) < h, <H(B)sH(B)> = 1’
(H,E ]=@E) E,=H,-E,, forallHeh.

(7.1)

(7.2)

Let / =/ denote the compact R-linear subspace

[=2LR-((H")+ S R-(E,~E )+ L R-(i(E,+E_));
BE 4 BEA ) sEa 1.9)

and thus we have the R-linear direct sum
[ =/ +{if), and moreover [/,/]c /. (7.4)

Let G denote the connected Lie group with Lie algebra
L.

From (7.2), we have (.,.),/,/ —~R and by the nonde-
generacy of {.,. },(+,» ) restricted to / X/, (if }x(if},
respectively, is nondegenerate (and real). This allows
us to identify T*(i/ )= (if )X (i/ )=M,. From (7.4), G
acts on (i/ ) via the adjoint action, which one extends
symplectically to T*(i/ ). Hence for the triple (M, w, G),
of Sec. 2 we take ((i /)x (i /), d(X,dY),G), where we
take (X, Y) as running coordinates on Mz = (i [)

x (i [). As in Sec. 3 we compute the associated mo-
ment map, using (7.1), & (X, Y)(g)={((X, Y], &); hence
by the nondegeneracy of {.,» >|L" [ Vo) ={(X, V)I[X, Y]
=al,ae [

We now pick a very special @, a =2.,c,C,(E,-E_,),
cy,#0, real, Be 4, satisfying:

Property A: Let G, be the connected isotropy group
of @ with Lie algebra / ,, which we assume is specified
by a relation of the form

L, ={g|Pg +LU-Pyg =0, gL}
where P,:[ —[ is specified by P,(SfH,+ZLE)=2ZfH,
[see (7.3) and (7.4)] I is the identity operator in /, and
L is some linear map; moreover, if [X, Y]= ¢, then
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there exists ge G, such that Ad X =¥ < h (which shall
imply ¥ is regular), The only freedom in the element g
is that we may specify which Weyl chamber ¥ is contain~
ed in, and we shall always take it to be the positive
Weyl chamber with respect to the ordering, %'; and then
only a finite number of choices remain for g.

Using Property A of @, we can easily compute G
=3-"(a)/G .. For if [X,¥]=a, we pick ge G, such that
AdX =X, hence Ad, Y =y +Z,c aCora (Eg+ E )=y, yeh.
Note automatically f&) =X%,#0, B 4, hence ¥ is regu-
lar. We shall specify g uniquely by requiring ¥,> 0,
8= A, We now pick an orthonormal basis of #, with
respect to ,+), {H;,H,,...H,}, and define x =37_ix,H;,
y=27.1y;H;. From the previous remarks it follows that
we may take (¥, ..., %, ¥1,...,¥,) = (x,v) as coordinates
on O,, noting that they are constrained by the open rela-
tions x;> 0, SE 4, to lie in the positive Weyl chamber.

We claim that the symplectic structure induced on
0 is w —w, =2 dx,Ady,. For if P,X=3X,H,, P,¥
=LY H;, w={dX,dY)=2dX;NdY;+{{I-T=X, I-P)Y
terms}; hence if we show for X, =¥ +¢T, T< (1-P,)GL),
that [X , ¥, [=a implies Ad, X, =x+0(E*)E ', gy=¢,
g€ Gy, we will have proven our (local) assertion up to
“second order,” which is sufficient (see the argument
given in Ref, 5). First by the regularity of ¥ (and im-
plicitly the uniqueness of 8 ), it is easy to see— in fact
by sharpening the argument to be given— that & is
smooth in €, Let g =e+eV+ o(€e?), with the notation
having the obvious meaning. As we must have
Ad, F+€eT)=X+ekx, +O(&)< h, for all e small, it follows,
upon expanding the left side of the equation in ¢, that

[V,%]+T=% ch; but x= h implies [V,%]= (1 - P,}/, hence

P(V,¥]+ T)=0. Thus ¥, =0, as was to be shown.

For Hamiltonians on M, which induce Hamiltonians on
9., we pick the G invariant functions H=H(X, Y)
=tr[P(adX, adY)], with P a noncommuting polynomial of
its arguments. As is usual, we define the gradient of
Hc CY(M,) as follows: 6H={5X, Hy) + (Hy, 8, Hy,

Hy e (if ). This uniquely specifies Hy, Hy. Note the ad-
joint invariance of H, hence of 5H [and the adjoint in-
variance of (-, ") in (7.1)], implies

AdH (X, Y)=Hy(AdX, Ad,Y),
similarly for Hy. In particular if H = (a/2XX, X)
+(b/2)x{Y,Y), Hy=aX, Hy=bY. By the form of
w =(dX, dY), Hamilton’s equation on M, for the Hamil-
tonian H are

X=Hy(X,Y), ¥=-H,X,Y)

{7.5)

(7.86)

which upon using Ad X=X, Ad,F =Y and (7.5), are easi-
ly seen, as in Sec. 3, to transform on 9., to the equa-
tions

577:HY(7—Q V)y
with

65:—}1}((})5): (7- 7)

5(.)=%_[3, J, #=-(L,), B®), 2(0)=e,

where L, : g, gg,. Of course we have as usual on g/,

d ] a3

dog k) v 3k g,

dt dy; dt ox, ’
h=h(x,y) =H(X,7).
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Since ¥ k is regular, (7.7) implies [B, %]
=(1~P,)Hy(%,7); and thus determines (1-P,)B, and hence

B, since Be/ ,, as a function of ¢ through B =B(x, y).

Since automatically the H'” = (1/27)tr(ady)¥/,
J=1,...,n, are in involution on M,, so are the A’
=(1/2j)tr(ad¥)*, j=1,...,n, on @,; and hence they give
rise to a completely integral system on g/. The corre-
sponding Hamiltonian differential equations are (where
the subscript 0 shall denote initial conditions), X
=H{)(Y), ¥=0, hence X(t)=HY)(Y,). t+X,, Y({)=Y, on
M. Therefore, on @/, we have 0¥ =H4(¥), 65=0, hence
MO=Ad_, ., ([H G +7,), 7O =Ad _ 7,
b=(d-/dt)~B,,+], for an appropria{e g(t). In particu-
lar for j=1, H{'(Y)=7Y, and thus the above implies

6¥=7, 07=0, hence 5(¥-{7)=0; (7.8)
which in particular implies (1 - P,)B, =X =, ¥57cs
X(EB_E-B)° It is easy to show (see Ref. 1), that

(0, y(IN (gt +p+ oY), p+(E?), t—=;  (1.9)

and that as a consequence of (7. 8) and {7. 9) the canoni-
cal map (x, ») = (g, p) is just the projection of the canon-
ical map 5:(X, ¥) = (¥, X) onto 0/, (se Sec. 4 of Ref. 1).
Note that from (7.2) &'V = 1(§, ) = 327,32

+ Zgo aCa%, 7, which is just the Calogero— Moser poten-
tial of Olshanetsky and Perelomov. We remark that the
proof of complete integrability given here is the only
algebraic proof we know of, i.e., the only one that
doesn’t depend on the scattering map.

If we let H=3({Y, Y) - aXX,X)), then Hamilton’s
equations on M, are X =Y, Y =a2X; which transform to
the equations ¥ =7, 6V=a’¥, on O/, with the appropri-
ate 5(+)=(d-/dt)~[B,-]. Since 6¥=y, B=B(x,y)
=Bylx,v), the By going with the Hamiltonian 4{!’. Note
the Hamiltonian function on ), is 2" - (a*/2)27 42
Since on My, 2X(t) = (X, + a-'Y)e™ + (Xg~ a-1¥)ets,
2x(1) = Adyt[(vy + a1¥)e’® + (%, - a7, )e ™), §=- (L), B,
etc., for ().

The scattering maps for this system are discussed
precisely as in Sec. 4 using the maps 7 and #, the
crucial tool being 6[(¥+ a¥)e™*]= 0, (see Ref. 1). The
preceding equation also implies tr{ad(y + ax)

-ad(y - ax)l’, v=1,...,n, are integrals for the above
system. If we let a=ib, b real, in the above equations,
we get a periodic system with period 27/b.

We now consider the Sutherland type systems. Name-
ly, let us identify, with the usual symplectic structure,
T*G =G x(i[)=M,, via the (nondegenerate) inner pro-
duct — &+, ), (;/)x/), Where M, has the running coordin-
ates (@, R). The group G acts on itself by conjugation
which extends naturally to a symplectic action on
T*G =M,, via g:(Q,R) |~ (gQg-?, ad, ,R); and thus we
have for the triple of Sec. 2, (M, w,G)=(GX(i/),
d(KR, @-dQ)), G) (see Ref, 2). Note that the linearized
version of this group action about (¢, R) is just the
previous group action. The discussion we give here is
towards a different purpose than the one in Sec. 2, and
of necessity proceeds differently, although the formulas
are of course related. Since iw (g, z)=—(dR, Q-dQ)

+(R, @-1dQ A @-1dQ), if (my, 8,), (n,,8,) are elements of

T(T*G)iq,my =L + (i V=], we have

iw((nl, B])y (772, 82))] (Q.R} :<R’ [771, 772_» + ((Bz; 77;) - (Bj_y 7]2))-
(7.10)
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Given H =H(Q,R)c C!(M,), we define the gradient of
H in the ususal way (which is slightly different from the
way of Sec. 2),

iGH:<6R,HR>+(HQ, Q'16Q>; HRE[_, HQE(‘LL); (7-11)

and from the definition w(Xy, ¥)=Y(H), one finds
XH:(LQ)*HRaQ+([RvHR:,- HQ)am (7-12)

and thus we have the Poisson bracket {-, +},

{FO FO = (X, X)) =R, [FE, FPT) (7.13)

+i(FG, PR - (P, FR).

Note that if H=H(R) is an adjoint invariant function,
then if g(f)=e +gt + o(t?), 0=(d/dt)({H(AdR))
=([g, R}, Hp) =(R, [Hg, D, for all ¢c/, hence by (7,13)
all adjoint invariant functions of R are in involution,

As is easily computed (see Ref. 5), the moment map
for our action is given by & (@, R)=AdyR - R [note
$(Q,R) < (if ). We now pick an o :ZEEAiCB(Es -E),
c,#0, real, < 4, satisfying:

Property B: Let / _, be specified by a relation of the
form given in Property A, such that if AdgR-R =0,
then there exists a g€ Gy such that gQg-t=exp2ig), g€
(which shall imply g is regular), The only freedom in g
is that we may specify which Weyl chamber ¢ is con-
tained in, and we shall always take it to be in the posi-
tive Weyl chamber, k*, with respect to the ordering,
and then only a finite number of choices remain for g.

As usual we compute ©,=9-(a)/G,. If AdjR~R=q¢,
by Property B there is a ge G,, such that g@g' =exp
=exp2ig, q€ h. If we apply Ad, to the equation AdgR ~ R
=qa, we have Adg.-1,(Ad.R) - (Ad,R) =0; and so upon
making use of the identity Adg,4E, =e"* - E,, HEh,
which is a consequence of (7.2), we conclude.

{e~13BE, + 2!T8E )

Ad R =P +2sc pics =7, Pech.

(i — o~idg)

Note that automatically gg##71, ne Z, < A, and thus in
particular g is regular; and by property B, we may also
assume 73>0, Be A, If now {H,,... ,H,,Eis an ortho-
normal basis of k, let §=24;,,q,H;, p=2..,p,H;, then
from the previous remarks we may take {g,,...,4,,
Pis- .- ba)=(q,p) as coordinates on 6/, subject to the
open relations gz >0, gs#n%, nc Z, fc A.

The symplectic structure « — w, :ZE"faqi Adp;. To
establish this (local) fact, it is sufficient to show that
at the point (@,,R,) = {exp2ig +¢T), R,}, G h, P, T =0,
% (@.,RJ)=a, the (R,[n,,n,]) piece in (7.10) is really
“second order” in e. This reduces to showing, as in the
previous case, that for the (unique) g, =e+eV +0{?%)
discussed in Property B, g exp(2ig+ eT)g! =exp[2ig
+0(e?)], which upon linearizing about =0 is just the
familiar fact that P([V, 2ig] + T) =0.

We now consider the adjoint invariant Hamiltonians on
M,, H? =(1/2j)tr(adR)¥, j=1,2,...,n, which as
discussed before, are in involution. Since the H'’s are
G invariant functions, they project down to Hamiltonians,
g, p) = (1/2)trf(ad¥)?], §=1,...,n, on ©,; which
moreover are in involution, thus giving rise to a com-~
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pletely integrable system. From (7.12), the HY’s lead
to the Hamiltonian differential equations on M,, R =0,
€ =(L,),Hy (where we have used the fact |[R, HJ’]=0);
which has the solution R{t}=R,, Q(i):(LQo)* exp{(Hz(R,) £).
To study the equations projected to ©!,, set g7 Qg(t)
=exp[2ig(t)], g(0)=e, ¥=~(Lg),B,. The previous equa-
tions imply, in a now familiar manner, 7= Ad,-17,,
q=-(i/2) exp™ (g™ (Lo, exp[Hy (ro)1)]g), Q,=exp(2:F,).
The associated differential equtions for 7, ¢, are easily
computed using g Qg =exp(2ig), Ad, R=7%, and the
adjoint invariance of H=H'"(R), i.e., AdHY (R)
:H}zf’(Ad‘R). They are found to be

07 =0, 2ig=adyB,; - B, +Hy(7,), @=exp(- 217()'.7 14)
In the case of j=1, HP(R)=iR, and (7.14) implies
(1 - P)B, =~ i34c o ¢s{Eg — E_y) 8in"7, which thus deter-
mines B;, We also note that & =0, 6a =0, hence
5(r + £a) =0 for all the above differential equations; and
sor=r+ia=p+ 3T 4Cs COL Gy(Eg + E ) satisfies the
“Lax equation” 67+ =0 for all the above flows. Finally
note that 1" = (7, P = 3Zp% + 58,2 4% cot?q,, the «Suther-
land” potential. We may of course scale these algebraic
equations, g —aq, and take a purely imaginary to get
the noncompact case, or let a —0 to get the x-? potential,
which corresponds to linearizing the group action about
(e, R).

We remark that although Properties A and B imply
the computational “Lax” criteria of Olshanetsky and
Perelomov, (see Refs. 2, 3), and hence seem stronger,
we suspect that in fact they are equivalent. In practice,
from the remarks in Ref. 5, it is clear that in order
to find o satisfying Properties A and B, one should
look for o’s whose orbits have dimension Z{rankcé} un-~
der the adjoint action of . Thus one would expect that
the o’s in Properties A and B are the same up to the
factor v—1. It is of course an interesting question to
investigate 9/ s for symplectic actions other than the
ones discussed here, and hopefully find more integrable
systems. Finally, we mention that given a concrete
matrix representation of 5, we can of course represent
the preceding equations as matrix equations; and hence
recover results of preceding sections.
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Formal quark binding and geometric strings
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Geometric quantization is applied to a line bundle over spacetime with structure group GL(2,C)/SL(2,T)
and curvature form determined by the Ricci tensor. The Ricei form is interpreted as the Hamiltonian form
for a particle moving on a string associated with a harmonic oscillator spectrum. Strings are characterized
as minimal surfaces, and quarks as the gradients of minimal immersions of surfaces in a three-dimensional
spatial hypersurface, leading to a model of a baryon as the intersection of three such surfaces, and their

associated quarks.

. INTRODUCTION

In a previous paper! it was suggested that the Ricci
form of a line bundle appearing in geometric quantiza-
tion could be used explicitly as the Hamiltonian form
of some formal mechanical system, and that in the
special case of general relativity with T, having a U(3)
generalized duality symmetry group? this could be rele-~
vant to the theory of quark binding. The purpose of
this article is to investigate this question in more de-
tail.

The geometric quantization® is based on the methods
of Segal? and Kostant.®'® The former approach uses the
metric tensor, g, , of space—time, together with the
complex structure J implicit in the definition of two-
component spinors, to define local creation and annihil-
ation operators for vectors and spinors. The choice of
complex structure J defines a reduction of the bundle of
general linear frames, with structure group GL(4,IR),
to that of complex linear frames, with group GL(2,C),
whilst the further reduction to the bundle of spin frames
(up to a sign) with group SL(2,Q) is determined by a
section of a line bundle, L(M), with structure group
GL(2,C)/SL{(2,Q). Line bundles can be classified by the
integral cohomology class of their Ricci curvature form,
and this form is used in the Kostant approach for quan~

tizing real scalar functions, in this case on space—time.

The Segal type of approach is equivalent to this if the
Kahler form g{X,JY) is cohomologically equivalent to
the Ricei form R(X,JY) for all vector fields X, Y on
space—time. The difference between the two forms is
given by the tracefree Ricci tensor U, =R, ~ %R-‘»"uw
again contracted with J, and it is this object which
forms the basis of the Petrov— Plebanski classification
of second rank symmetric tensors in terms of their

eigenvalues.2?

The phase space of the formal mechanical system is
the four-dimensional tangent space to space—time,
and the configuration space a two-dimensional subspace
related to the polarization in Kostant quantization. The
interpretation of the system is considered in Sec. II of
this paper using Hamiltonian functions and Kostant
quantization, showing that these functions are associ-
ated with formal harmonic oscillators. This, together
with the two-dimensional configuration space, is sug-
gestive of strings in dual resonance theory,® and in
Sec. III this correspondence is investigated. The usual
string Lagrangian leads to the characterization of the
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surfaces of evolution of strings as minimal surfaces,
and in this paper an alternative definition, as the vanish-
ing of the mean curvature vector, is used in conjunction
with analyticity arguments with respect to J to show how
such surfaces arise in geometric quantization. This
approach is used to describe a formal point particle with
energy— momentum tensor of Plebanski type [T - 3S]is
in terms of quark representations of an SU(3) group,

and formal strings.

Finally, Sec. IV compares the spinning string formal-
ism of geometric quantization with elementary aspects
of supergauge theory, but in this paper no attempt is
made to deal with problems of string theory associated
with normal ordering or ghost elimination,

1. HAMILTONIAN FUNCTIONS

In elementary classical mechanics the Hamiltonian
form of a single particle moving in R"XR! can be ex-
pressed as

n
2 :Zlidp,- rdqt —dh rdt, 2.1)
i=
where (pi,qi) are momentum and position coordinates,
and the Hamiltonian, %, for this motion is related to a
Lagrangian L by

n

L ..
h:L-—Zi %‘—t ql, (2.2)
aL
[]i:a&;v (2.3)

In general any nondegenerate closed 2-form Q can be
interpreted as a Hamiltonian form, and as the Ricci
form is closed by virtue of the Bianchi identities it may
be considered in this role in regions of space— time
where it does not vanish; if degeneracy occurs, then the
mechanical system still exists, but is subject to con-
straints,

The classification of Ricci forms is based on the
Plebanski classification® of the corresponding Ricci ten-
sor, whereby the type of the tensor is denoted
A= 2= A= 23]y, Where A, 0<a<3, are the eigen-
values and (n) the degree of the minimal polynomial of
the corresponding matrix. Four generic types exist:
(T-51-8-S5ky), [2-Z-51-S3]uy, 2N-Si-S]y, and
[3N-S](4, together with degenerate subtypes, where Z
denotes a complex eigenvalue, T a real eigenvalue
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whose eigenspace contains a timelike eigenvector, N an
eigenvalue with a null, but no timelike eigenvectors,

and S an eigenvalue with only spatial eigenvectors. In
this paper only the first of these generic types, and that,
for a Riemannian space would be the only type, is con-
sidered. In terms of eigenvectors, V*,0<a <3, the
Ricci form £ for this type can be written

Q=(T=S)dVOAdV® = (S, + S) dVindV?, (2.4)

where the two bivectors are preserved up to an orienta-
tion by J, Comparing this with (2, 1) shows that £ form-
ally describes a particle moving in the V? direction with
Hamiltonian (7-S;)V; and momentum - (S; + S;)Vy, so
that energy and momentum are both linearly propor-
tional to displacements, but in different directions. The
other Plebanski types differ from (2.4) by all containing
terms of the general nature dp Adt and dh Adg which
vitiate this simple interpretation.

Further investigation of the mechanical properties of
the system requires consideration of Hamiltonian func-
tions for symmetries of €, and their Kostant quantiza-
tion. A vector field X generates a symmetry of & if the
corresponding Lie derivative /, vanishes

foa: (2. 5)

The Lie derivative can be expressed in terms of exteri-
or derivation, d, and contraction with respect to X, X1,
by

[ xSe=X1dQ+ d(X182), (2. 6)
Since € is closed, symmetries must satisfy

AX1Q)=0 2.7
and this leads to the exact sequence on which the
Kostant quantization is based

0~ —~ = (M) A(M) & A,(M) L u(m), (2.8)

where @ (M),A(M),Ay(M), and U(M) denote, respective-
ly, smooth complex functions, globally Hamiltonain
vector fields, locally Hamiltonian vector fields, and
complex vector fields, all on space-time M. A,(M)
consists of vector fields X, which satisfy (2. 7) and A(M)
those X for which X I is exact

AM)={X € Ay(M) [(X 12) =d e}, (2.9)

The maps i and j are inclusions, and 8 is the prequanti-
zation map

we C™(M).

b:9—X,,
where X, is defined by (2. 9).

(2.10)

Symmetries of the Ricci tensor generated by homo-
geneous vector fields have been classified by Plebanski
using generalized duality invariances of the tracefree
tensor U,, which can be represented as subgroups of
orthonormal transformations SO(3, 3) of IR® curvature
bivector space. For U, #0, the maximal group is U(3)
for type [T-3S];,, which preserves a complex structure
on IR® , and consists of SO(3, IR) vierbein rotations of the
spatial eigenvectors, their duals in IR® and the pure
duality transformations which are diagonal elements of
U(3), of which the latter do not generate symmetries of
the trace except for phase rotations generated by J cor-
responding to hermiticity of R,,. For [T-S;-S;-S;],,
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J invariance is the only symmetry, whilst for types with
degenerate eigenvalues rotations in the planes of equal
pairs of eigenvectors are symmetries. Any vector field
X can be expanded locally® in terms of the nonholonomic
basis {V"} 0<a<3

d

X= aé’o” P (2.11)
3
“~Z = 2 M e, Voo Vo, (2.12)
knokl “1""’“1:"0 %

The vector field X generates an automorphism of an
integrable kth order G structure iff for each fixed set
(2 ***a,) the element Mgy -+a, Delongs to the Lie algebra
of G. For a vector field X generating rotations only the
k=1 terms in (2. 12) are nonzero, leading to the usual
description of rotations by

? ]
("33 - 55%)

etc., but for the J invariance in four dimensions the
full group is the second-order group U(2, 2) with first-
order part GL(2,C), whilst in the atypical case of two
dimensions!® there is an infinite parameter group im-
portant in string theory (see Sec. IV). J-phase trans-
formations are purely first order and generated by

2 3 3
3 =_
¢Z=1(z 2 % ai’)’

where

1 1
o (V4 V9), A= (V412 3
z ‘/2—( ), z \/'"z'( iV (2.13)
and the second-order elements of U(2, 2,) are special
conformal transformations whizh give symmetries of
U,, but not of R,,,.

From this the Hamiltonian functions for members of
A(M) can be written down by inspection using (2. 4) and
(2.9). For [T~S;-S,~S;),, there is only one Hamil-
tonian function, ¢ 7 where

@y =3{(T — Sy)2'z, - (S, +S,)2%7;} (2. 14)

which in the special case of an Einstein space, where
the tracefree combinations of eigenvalues are zero,
reduces to

‘P,=lR(Ziz1+ZZZ—z)- (2. 15)

For (2T - 2S);,, which describes a general electromag-
netic field if the trace is zero, (2.14) becomes

(2. 16)

and there is also a Hamiltonian function, ¢y, for rota-
tion in the (1 - 2) plane

@, =SUV) - (V1)) @.17)

and in the R =0 electromagnetic case, € is only of sec-
ond rank with ¢ , and (piz becoming equivalent, In the
case of [T - 3S],, there are two Hamiltonian functions,
®, and ¢_ given by (2. 14) with equal S,,0<4<3, and
(2 1. ’I"}zle (1-3) and (2 - 3) rotations have the effect of
changing J, and it was suggested previously! that in this
case space— time admits three complex structures dif-
fering by SO(3, IR) transformations: Such a structure is
known as a quaternionic structure!*!? and requires the

1 1= 2=
<pJ==;Rz 2y — 822,
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vanishing of the Ricci curvature, If the Ricci curvature
is nonzero an almost quaternionic structure can still
occur, but in this case only one of the three linearly in-
dependent complex structures can be integrable, and
hence usable in the Kostant quantization.

Each of the Hamiltonian functions above is formally
similar to that of a harmonic oscillator, and the Kostant
quantization of such a system has already been consider-
ed in the literature.® In order to overcome problems
associated with curvature and lack of square integrabil-
ity, the prequantization map b is replaced by a quantiza-
tion map 6, where 0 acts on sections s of the line bundle
L{M) by covariant derivation

8,5 = (Vy = 27ip)s (2.18)
and 6, is given by
8, =8, +wav,1/2 (2.19)

where v denotes the volume element on a polarization
F (M) of the tangent space T,(M) at xe M, where F,(M)
is chosen to give an irreducible representation, and the
Hilbert space of square integrable functions W, where

W={ye T(L&LF) |V, 0 =0VXc F (M)}, (2. 20)

where T'(L®LT) denotes the space of sections of the line
bundle defined locally by the product of fibres of L{M)
with the volume elements (v,)'/? over x< M. Solving the
eigenvalue equation for the operator §,, where v is the
Hamiltonian function, ¢; or ¢, leads to a harmonic
oscillator spectrum, with a zero point energy coming
from the volume element term in Bw. For (2. 14) the
eigenvalues e, satisfy for the special case of an Einstein
manifold

e; =@ (N +1), N an integer (2.21)

corresponding to a two-dimensional oscillator, whilst in
the general case the two vibrations are nondegenerate,
and ¢, has a one-dimensional spectrum. Because of the
rotational nature of the Hamiltonian vector fields their
eigenvalues have an angular momentum interpretation
suggesting a Regge-trajectory like relation, and to this
end a string interpretation is considered in the next sec-
tion,

1. MINIMAL SURFACES

A special case arising in the theory of polarizations
over space— time is that in which the distributions {F,},
xe M, are surface forming, and furthermore form a
minimal surface. For real vector fields X, Y< {F,}, the
condition that they are locally surface forming is accord-
ing to Frobenius theorem that they are involutive, i.e.,

(X, Y]e F (M) VX,YeF,/(M) {3.1)

which is satisfied by any real polarization F, leaving
only the minimal condition to be considered. For com-
plex vector fields (3.1) is not sufficient, but as any
complex submanifold of a Kdhler manifold is necessari-
ly .uinimal®*® we consider minimal surfaces directly in
what follows.

The physical significance of minimal surfaces comes
from the observation of Nambu®* that a vibrating string
is the simplest model giving the harmonic oscillator
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spectrum of the factorizable Veneziano amplitude in
dual resonance theory

' M =Y ndl,d, (3.2)
n

where @’ is the slope of the Regge trajectory, M the in-

variant mass, and » the occupation number of the Fock

space with creation and annihilation operators a, a'. The

string motion can be described by either of two actions

11 and 12

1 s ax* (o, N\ [ax* (o, T)\?
Ilﬁ4na’ﬁdo[( e )_( a0 ) ’
1 T2, [ axt ax*\%  fox*\?%/fax"\?
’2-‘—zm'[1 arfao [<3? %) -(5) (ﬁ) )

(3.4)

where (0, 7) are space and time coordinates on the sur-
face of evolution of the string, and ¥* the space— time
coordinates of a formal point particle on the string.
Both I; and I, give the equations of motion of the string,
but only the latter leads to the Virasoro gauge conditions
necessary for the elimination of ghost states in the dual
resonance model. Geometrically the stationary action I,
defines a minimal surface, alternatively, and more
rigorously, characterized by the vanishing of the mean
curvature vector of the surface, 5-17 whilst the integrand
in I, is also that which appears in the Dirichlet integral
for harmonic analysis, and coincides (as a double inte-
gral) with the area integral I, in orthonormal coordin-
ate systems, only.

(3.3)

For the characterization of minimal surfaces in terms
of curvature, let N denote a surface (two-dimensional),
and x : N =M be the immersion of N in M, where for the
present paper M will be either space— time or a space-
like three-dimensional hypersurface, denoted M?. The
covariant derivative D, Y with respect to the Riemannian
connection of M in a direction u tangential to N of any
vector field ¥ normal to N can be decomposed into
normal and tangential components by

DY=V)Y-AY (3.5)

where Vv, is the covariant derivative in the bundle of
normal vectors to N, and A¥(u) is the second fundament-
al form on N. Using the Riemannian metric g(X, Y) of

M, a symmetric quadratic form Blx, v) is defined on N
by

g(Bu,v), V) =g(AY@),v), (3.6)

where u, ve T(N), Y e T*(N). The mean curvature vector
H is then defined to be the trace of B(u, v)

{u)?

H=4B,,g"%, l1<a,B<2, 3.7

where o, 8 are indices of coordinates on N. For the
space— time applications two types of surface N will be
considered: (1) those with indefinite metric, and (2)
those with negative-definite metric.

The relation of minimal surfaces to geometric quanti-
zation is largely governed by the Weierstrass corre~
spondence’® between such surfaces and analytic func-
tions, and also their connections with two-component
spinors. Let M‘® denote a three-dimensional spatial
hypersurface, then from the general existence of iso-
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thermal parameters in two dimensions, the immersion
x:N—M"™ can be represented conformally, and x de-
fined in terms of analytic functions on N. For the con-
nection with geometric quantization, N must be chosen
such that the decomposition

T (M) =T, (N) & THN) (3.8)

is preserved up to an orientation by J. Let {ul,uz} be a
basis for T (N) and {w',w?} be the corresponding dual
basis (i.e., 1-forms on N); then

Ay = — Hu' Au?, (3.9)

where H is the mean curvature vector of the immersion
x:N—M®, and A the Laplace — Beltrami operator on
N. For a minimal surface H=0, and the immersion is
conformal (similarly for x :N—M). Let z=u, +iu, be a
complex parameter on N; then (3.9) with H=0 can be
expressed as
dz dz

= =0,

= 5 (3.10)

where x(u,,1,), being a harmonic function of two real
variables, is, for a simply connected domain, the real
part of a suitable analytic function Z(z), and dZ/dz is
evidently a null vector in three-dimensional space.

A null vector of 3-space can be expressed in terms of
two regular functions (&', £2):

dz

dz

iy + @y,

de 1g2
P

(2 - (£2)%,

(3.11)

According to the Cartan isotropic vector-spinor corre-
spondence, '® the two functions (£!, £%) constitute a spinor
basis for SU(2). From (3.11) we get

x1=Re [{(£V? - (£},
x®=Re [ i{(£)? + (£} dz,
x*=Re [ 2£'t2dz.

(3.12)

The spinor basis (£!, £%) can be replaced by any regular
function f(7) of the complex variable 7 defined by

T= 52/517 (
3.13)
oy e, ap }
f(T)-(é‘)/{dsz -,

thereby associating a minimal surface with any regular
function of a complex variable,

From the Weierstrass relationships it follows that

any minimal surface can be represented as a translation
surface generated by null curves:
X, uy) =y@e,) +olu,), (3.14)

where y(u,) and »(u,) are the null generators, from which
a family of associated minimal surfaces x(x,,%,, ) can
be obtained by rotation in the yv plane

(3.15)

For minimal surfaces with indefinite metric, an ana-

Koy, 1y, 0)=e¥y(u,) + e P u,).
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logous set of results holds,'® and the generation by null
curves indicates that the minimal surfaces in M are
two-dimensional sections of the light cone; as the con-
formal structure is determined by JJ and a phase angle
represented by a rotation in the (u,Au,) and (u; Aw,)
planes, the effect of the latter is to choose particular
members of the family of minimal surfaces (3. 15) for
dJ.

In order to show how the strings of hadron physics
may describe quark binding, we consider the generalized
Gauss map'®'" ¥ : N~ G™(3,2) associated with the im-
mersion x : N~ M® by ur T (N), u€ N, where G%(3,2)
denotes the Grassmann space of real oriented 2-planes
in three dimensions, and

G™(3,2)~S0(3, R)/SO(2) xSO(1). (3.16)

The Weierstrass relationships permits the Grassmann
space to be identified with the null quadric @,, that can
be regarded as a subspace of the complex projective
space P,(T)}, where

QIZ{q:(ql,qz,q3)€P2((r)’Eq::0}. (3.17)
p=1

The identification results from considering the action of
the complexified group SO(3,@) on the vectors {g}c €3,
where ¢ is the gradient dZ/dz of the immersion

X :N=M™ in (3.9)—(3.11). The complexification
SO(3,R) —S0(3,q) is the result of regarding a harmonic
function of two variables as the real part of an analytic
function of a single complex variable with the complex
structure induced by the restriction of J to T(N).

It was suggested® that a point particle with energy
— momentum vector p* would have T** of type [T - 3S],
with S=0, spin 3 by the Cartan isotropic vector argu-
ment, and a symmetry group U(3) broken by the trace
of T, and hence might describe a baryon. The point
particle of a hypersurface M‘¥ orthogonal to p* can be
described nonlocally by the intersection of three planes,
each of which defines an element of G®(3, 2), and by
(3.17) also of P,(@) provided a suitable complex struc-
ture exists for each plane. This situation occurs if
space— time admits an almost quaternionic structure
whose SO(3,R) structure group realized by rotations in
the space orthogonal to p* (which also defines the time-
like eigenvector of T**). Each of the three almost com-
plex structures J, can be used to set up the Weierstrass
formalism on the tangent space T(N,) 1 <a < 3 spanned
by the Ricci eigenvectors VPA VS 1 <b,c#a<3. Each of
the resultant minimal immersions x: N, ~M' has a
gradient vector g, =dZ/dz°, hence the point x « M® is
represented in P2((1‘) by the product of the three states,
v,. Each of these defines a basis vector of @° and hence
a formal quark state, which by (3.11) is also a formal
spin 3 object under SO(3, R). A transitive and effective
group on P,(C) is SU(3)/Z,, with isotropy group U(2)
leaving a single minimal surface invariant.

Since each oriented plane is defined by Ricci eigen-
vectors as V®AV® and defines a point of P,(Q), it follows
that the SU(3) group can be regarded as a subgroup of
the generalized duality group U(3) for the trace-free
tensor U* of type [T — 3S] _ with V? A V¢ isomorphous to
a (1,0) symmetric spinor basis of U(3). If minimal
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spatial surfaces are identified with strings, then a
string model is obtained with three strings tied at one
end, and for each quark the Hamiltonian & (see Sec. II)
=(T - S)x*, 1 <a <3 with x° the displacement along the
a-th string, and in this case S=0., The minimal surface
/spinning string relationship is examined in the next
section.

IV. MINIMAL SURFACES AND SUPERGAUGE THEORY

For minimal immersions x:N —M of spacelike sur-
faces, x satisfies (3.9) with H=0, i.e.,

ax=0 (4.1)

the two-dimensional conformal equation on N, In iso-
thermal coordinates A is given by 32/3u2 + 82/ for
spatial surfaces N, and for N with indefinite metric
(4.1) is true with A=9%/0u? - 32/0u5. As in each case x
is normal to the surface N, it transforms as a scalar
under the conformal transformations of N, The gradient
dZ/dz of the immersion defines a null vector for
¥ :N —M and hence a two-component spinor, ¢, which
as the gradient of x, satisfies a first order equation
ad
a .
V5 e=0,

o

(4.2)

where y* are the two-dimensional gamma matrices
01
and 01
10 -10

for Minkowski surfaces and
01 0 ¢

and
10 -7 0

for spacelike surfaces. In this, the situation is similar
to basic string theory, ® but for immersions x:N—M a
major difference occurs as the spinor ¢ has to be re-
placed by a null vector ¥ of the 4-geometry, i.e., must
define a photon state.

Solutions of (4,1) and (4. 2) proceed as in elementary
string theory, except that in the case of spacelike mini-
mal surfaces the eigenvalues of the exponentials in u,
and #, must be opposite in sign

x* =x*(0) + p*(0)u® + 2 x¥cosnu exp(- inu®), (4.3)

n=0

where x*(0) and p“(0) are constants of integration, and
unlike the string models no boundary conditions have
been specified. As a minimal surface is the generaliza-
tion to curved space of a plane in the same way as
geodesics are related to straight lines, the open string
conditions seem more appropriate, but with closed
string conditions relevant in black hole physics.

Constraints arise from the requirement of conformal
invariance in two dimensions, where instead of the full
conformal group being of second order an infinite pa-
rameter group'® is generated by the elements

X :i}lf“(u)a/au“‘,

where f*(u) is an arbitrary function on N, Expressing
the minimal Minkowski surface coordinates in the light-
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cone form
u, = (1/Y2 Yuy +u,) (4.4)

the infinitesimal operators of the full conformal group
can be expressed as

Cop = i, )"0%, (4.5)
where
1 0 a
PO S S
T (8140 * 8113) (4.6)
which satisfy the commutation relations
[Cray Cong) =B g(m =) C s (4.7)

where a,B e {+, -} and (4. 7) is not summed over a. Of
the set {C,,} the subset {C,,, C,,,C,,} generates, respec-
tively, the translations, Lorentz rotation and dilatation,
and the special conformal transformations. In this mini-
mal surface approach the infinite set of classical
Virasoro constraints is replaced by the infinite set of
constraints corresponding to invariance under transfor-
mations generated by {C,,}.

For the supergauge transformation of the Ramond
— Neveu— Schwarz model?°~22 given by

dx=iay,

bp=2,xvia +Fa, (4.8)

BF =iay'd,p, 1=i<2,

where « is an anticommuting parameter, to be permis-
sible they must preserve the functional relationship that
exists between x and ¢ for minimal immersions. This
relationship can be expressed in the general form

x*=Re[ y4 @@’ dz, 1=a=2 (4.9)

so that in addition to the usual spatial transformations
of x* there are further degrees of freedom associated
with the complexified rotations, and in principle a
purely imaginary translation 6x could be expressed in
the spinorial form of (4.8), provided the overall set of
transformations were compatible with the conformal
invariance in two dimensions required of a minimal
immersion, and the usual set of transformations (4. 8)
do achieve this when the parameter o satisfies a two-
dimensional conformal equation of motion,

According to the geometric quantization vectors and
spinors must be quantized® according to

[x*, )= ig(x*, Jx")
{or, wh=2g""

in the Segal type of scheme, or in the generally inequi-
valent Kostant representation g(x*,Jx*) in (4.10) is re-
placed by the Ricci form R(x*,Jx”). If the string coor-
dinates x* are quantized in this way, then the expansion
coefficients x¥ in (4. 3) must also be quantized. If the
commutation relations {x*, x/T}=g"*5,,, are to be com-
patible with the Kostant quantization of harmonic oscil-
lations of the geometry in Sec. II, then the expansion
coefficients must be rescaled by a parameter v2a’ such
that 2a’= iR for an Einstein space, or af,=3(T - S,)
and al, = 5{S, +S,) for the 0— 3 and 1— 2 planes in the

non-Einstein case [T -8, -5, ~ Ss]m’ where in dual

(4.10)
(4.11)
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resonance models o’ is interpreted as the slope of the
Regge trajectory.

It seems natural also to try to define pure gravity,
i.e., the conformal structure (J, 8 ), in terms of the
string formalism by specifying minimal surfaces. Let
T(M)=T(N)a T*(N) be a decomposition of the tangent
space of M, and this time require both N and N* to be
minimally immersed in M. The immersion x :N'—~ M
defines a null vector dZ/dz,, where z; is a complex
parameter on N and x =Re[(dZ/dz,} dz, is normal to N,
i.e., lies in T*N). Similarly, the immersion x : N*—~ M
defines another null vector dZ/dz,, where z, =u, +1iu,,
z,=u,+u,, where u’ are coordinates on N, N%; and x
satisfies both

x %x 9%y 9%x

(AR ET A A R PR
and hence satisfies the zero mass Klein— Gordon equa-
tion in space— time. Considering again the generalized
Gauss maps, the minimal surfaces N and N* are each
associated with elements dZ/dz of the quadric @, in
P3(C) on which the complexified rotation group SO(4,T)
acts. Both dZ/dz, and dZ/dz, must define spinors of the
two-dimensional conformal group on the surfaces N and
N*, but the choice of these surfaces is arbitrary apart
from the J-conjugacy, and must be made Lorentz co-
variant. For Lorentz covariance of the pair of minimal
immersions, dZ/dz, and dZ/dz, must define a single
spinor representation of the full conformal group of
spacetime, i.e., a twistor?® representation of SU(2, 2).

0

V. DISCUSSION

This paper shows that a large part of the formalism
of contemporary theoretical physics can be described in
a purely geometric context, and since geometric and
representation theoretic concepts are already implicit
in field theory no extra physical assumption is involved
in applying the more obscure geometric ideas to physics
also, although there is no a priori guarantee of their
relevance at scales of distance and energy involved in
presently observable phenomena. If the identifications
with formally similar physical phenomena are taken
seriously, it means that:

(1) strings are minimal surfaces with either negative
definite, or indefinite metric;

(2) quarks are the gradients of minimal immersions
of spacelike surfaces in three-dimensional spatial hy-
persurfaces;

(3) baryons are point particles of three-dimensional
spatial hypersurfaces with T*Y of type [T - 3S](2), con-
sisting of three quarks bound together in the internal
space P?(C) by three spacelike strings, and

(4) the slopes of Regge trajectories are determined by
the eigenvalues of the Ricci tensor.
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Physically the interpretation (1) is obviously not
necessary since strings of vortices, thin compared to
their length, have been shown to give surfaces of mini-
mal area via the transverse Lorentz contraction factor
in the Lagrangian, 2* whilst the successes of the colour
gluon model provide an alternative to (3). A lot of geo-
metric concepts of relevance to constraints have been
omitted from consideration here; in particular, the
maximal immersion®>*?® of three-dimensional hypersur-
faces in space— time required for positive gravitational
energy, and the definition of spinning strings and super-
gravity via the square root of the Hamiltonian con-
straints, 2+2¢ and all of these are required for consistent
propagation of the fields. The real drawback of the
geometric approach to quarks is that whilst it does not
appear to require color, it cannot explain all five cur-
rently known quark flavors.
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Polynomial tensors for double point groups?®

P. E. Desmier and R. T. Sharp

Physics Department, McGill University, Montreal, Quebec, Canada
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Generating functions for (T',,I',,) tensors for each pair of irreducible representations I', and T, are
calculated for each double point group. A (T,,I',,) tensor transforms according to T, and its components
are polynomials in another tensor transforming by I',,..The actual tensors are given for the groups “C,,
@p,, “T and for some representations I',, of “0. Certain of the polynomial tensors provide polynomial
SU(2) bases reduced according to the double point group in question.

I. INTRODUCTION

In a recent paper! (to be referred to as 1), generating
functions are given for the point groups C_, D , T, O,
and I (and for point groups involving reflections) for
T, T',,) tensors transforming by a particular irreducible
representation (IR) I', whose components are polynomials
in the components of a tensor transforming by another
IRT,; for C,, D,, T and O the explicit polynomials are
given.

In this paper we carry out similar calculations for
the double point groups. In Sec, 2 the generating
functions are given for each of ¥'C , ¥'D  @T @0,
and ‘], Section 3 contains integrity bases which yield
directly the explicit polynomial tensors for ‘C_, ‘9D |
@7 and for some IR’s T’ of @0, In Sec. 4 we outline
the use of certain of the tensors as polynomial bases for
SU(2), reduced according to a double point group
[or O(3) reduced according to the corresponding point
group].

The remainder of this section is devoted to a review
of general properties and the method of calculation of the
generating functions. A somewhat complete bibliography
of the subject is found in I.

The generating function B, ,(A) carries important
information about (T',,T, ) tensors. If B, (\) is expanded
in powers of A,

Br,m()“):g’cl’xp’ (1)
then c, is the number of linearly independent (r,,r,)
tensors of degree p. B, (1) may be calculated from the
formula®

1~ Nsx;kr

=5 2 Fetd A @)

2)

romd

Here N is the order of the group G, N, is the order of the
the class s, X,, is the character of s for I', and A is
the matrix which represents some element of s in T,

In all our examples B, (1) may be written in the form
B, ()= (20k /T = x9)'e, (3)

where the sum and product are finite. To each denomina-
tor factor 1 — )% corresponds a functionally independent

a)gupported in part by the National Research Council of Canada
and the Ministére de I’Education du Quebec.
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scalar of degree ¢ in the components of the T" tensor.
The number 3 I of such scalars is the dimension £, of
the IR T',. Each numerator term £,)* implies the
existence of kp linearly independent (I"r, I ) tensors of
degree p (they are also linearly independent of any lower
degree T', tensor multiplied by denominator scalars).

A useful check on the correctness of the generating
function is the dimensionality condition!

51,8, 0= (1= ), @

/, is the dimension of T',.

The following composition rule’ is useful for con-
structing a generating function for I', tensors which are
polynomials in the components of two tensors trans-
forming by T', and T, [(T, T, +T,.) tensors]:

By O M) = 5 B (0B, 0)CT",

rim,m’
et

o (5)
where C7"" is the multiplicity of T, in the direct product
T ®T .

r r

2. GENERATING FUNCTIONS FOR DOUBLE POINT
GROUP TENSORS

A double point group ‘9°G is a subgroup of SU(2) just
as the corresponding point (finite rotation) group G is
a subgroup of SO(3). To get the defining matrix
representation of the double group, write down the
(rotation) matrices for the j =3 representation of SU(2)
which represent the rotations of the point group.® Since
each element appears with its negative, @G has twice
as many elements as G. It may not have twice as many
classes (and IR’s) however, since elements with zero
character (180° rotations) may fall into the same class
as their negatives.

The IR’s of the double point group “’G may be clas-
sified as odd and even. The odd IR’s are found in the
reduction of half-odd IR’s of SU(2) while even IR’s are
found in integer IR’s of SU(2). Even IR’s of ‘G corre-
spond one-to-one to IR’s of G. The matrices which re-
present an element and its negative, for an even IR, are
both equal to the matrix which represents the corre-
sponding rotation for the corresponding IR of G.

1t follows from Eq. {2) that the generating function
B, ,(\), where T', and T, are both even IR’s of the double
point group @G, is equal to the generating function
B, ,(\), where T, and T',, are the corresponding IR’s of

Tom

G. If T, is anodd IR and T, an even IR of @G, then
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{*)=0. Hence we present in this section only those
generatmg functions B, (1) (and in the next section only
those invariants and tensors I, and E, ,) for which T,
is an odd IR. The generating functions and tensors with
T, even are found in Ref. 1. For I, odd, B_ m()x) is an
even (odd) function of A if T, is an even (odd) IR; even
tensors are of even degree, odd tensors of odd degree,
in the components of an odd tensor.

A. The group /G,

The group ‘¢’C, corresponds to the group C, of rota-
tions about an nth order axis. "”C is lsomorphlc to
C,,; thus it has 2n classes and 2n IR’s The generating
functions are given by I, Eq. (15): (here I', can be odd

or even):

B, (M =xr(1-29)", (6)
where

a=2n/HCF(2n, m - 1), )

r=pm-1),4.,+1, 0Sp<a-1.

HCF means highest common factor. The even (or odd)
IR’s of ‘C_ are the IR’s T, of C,, for which m is odd
(or even). The even IR I';,,_; of ®’C, corresponds to the
IR, of C, (1<m<ul.

B. The group ?/D,,

ta ’D" corresponds to the group D, of rotations about an
nth order vertical axis and » horizontal second order
axes. It closely resembles in structure the group D,
The two groups have the same number of classes and
IR’s, n+ 3; they differ only in that, for odd IR’s of @D, ,
the matrices of the two classes which, for U, , contain
rotations 7 about horizontal axes, contain an additional
factor i, The odd IR’s are those two dimensional T’
for which m is odd, for » odd only, the one-dimensional
IR’s I'; and T',. For % odd the even IR’s T'; and T', of
@p_correspond to the IR’s T'; and T, of D the even
IR 1" of @D_corresponds to T, of D [3<
For n eventhe evenIR’s T, T,, T, I‘4 of "”Dn
correspond to the same IR’s of D, while the even IR T,
of @D corresponds to T,,, of D, B<m<3n+1).

For ‘D , the polynomials det(1 —AA,) are given in
Table I. With their help we find the generating functions
B, _(A)for odd IR’s T',.

vl

< (n+3)/2].

When 7 is odd, T, and T, are odd, and we obtain
B, () =B, =1 -x9",
B, ;(\)=B, ,(\)=2*(1 -, (8)
B, ;) =B, ,(0)=x1-2")"
B, ;(\)=B, ;) =x%(1 -

For 5<sm<n+3, m odd, we get (when m is odd, a is
even and a/2 has the parity of »)

B1 A0 =@+ =21 =297,
)= (7\2+>\“)[(1 H(1 - a9)]?, ©)
A)=B, ()= 0s/2+xe/22) (1 - 21 =)
)= (7\9 + APYZ £ pemt 4 2@ 2Y (1 - O
In Eq. (9), a and p are related to m and » by

a=2n/HCF (2n, m ~ 4),

ry=n- |p(m —4)mod Zn-nl+4;

p takes the values 1, 2,..., za-1.

C. The groups /T, @0, and 1?1

The groups ‘T, 40, and I are the double groups
which correspond to the point groups T (tetrahedral),
O (octahedral), and I (icosahedral). The polynomials
det(1 — 2A,) for these double groups are given in Tables
II, I, and IV respectively. The characters also may be
read from these tables; they are the coefficients x, with
sign reversed. We have given the even IR’s the same
numbers as the corresponding IR’s of the corresponding
point group in Ref. 1. ‘7 has four even IR’s and three
odd; "'0 has five even and three odd; ‘¢’I has five even
and four odd.

The generating functions B, , (), where ', is an odd
IR of ‘@T, 0, or ‘I are given in Tables V, VI, VII
respectively. Recall the form (3) of the generating Iunc-
tion, A term k& >\P in the numerator of B, ( ) is indicated
by an entry p* » m the I',, row, I', column of the table,

A factor (1 -29)% in the denommator is indicated

by an entry ¢'* in the T, row, denominator column (all
generating functions based on I',, have the same denomi-
nator}. For example we read from Table VII (group

(d)I)

TABLE I. Polynomials det(l — A4,) for the double group “'D,, » odd. For n even, the following changes should be made for IR's I,
and Ty: for the class A", the polynomial 1+X should be 1 -2, and for classes B and AB, i) in the polynomials should be replaced

by A.
Ny 1 1 2 n n
Class

R An AS AMS (s=1,2,,,,,n—1) B AB
T, 1-2 1=-A 1-2 1-x 1—=2
T, 1-2 1= 1A 1+A 1+A
Ty 1-2 1+ 1—(=1) 1—4A 1+2A
T, 1-2 1+A 1= (=19 1+ 14
L, (r=5,7,+*) (1= 2A)? (1+2A)? 1-2xcos{m(r—4) s/n}+2? 1+2a2 1+A%
T, (r=6,8,°++) (1-2)2 (1-n)? 1-2rcos{r(r—4) s/n}+22 1-22 1-22
75 J. Math. Phys., Vol. 20, No. 1, January 1979 P.E. Desmier and R.T. Sharp 75



TABLE II. Polynomials det(l—2xA,) for the double tetrahedral group; w=exp(27i/3),

N, 1 1 6 4 4 4 4
Class .

R I R C, C; C4 C, c
T, 1-2 1-2 1-2 1=2 1=-2 1-2 1=2
T, 1=2 1-2 1-2 1—wA 1= wh 1= wA 1-wa
Ty 1-2x 1-2 1-2 1—wiA 1—wir 1—wr 1—wi
Iy (1= (1—2)? (L={(1+aF 1= 1-A% 1-28 1-23
1 (1=2)? (L+2)2 1+ 1—2A+22 1+A+22 1+A+2 1-A+A2
I (1= (1+2a)2 1+22 1— A+ wiA? 1+ wh + WA L+ A+ whl 1—w?x+ wa?
Iy (1= (1+n)? 1+2% 1— WP+ wal 14w+ wh? 1+wh+ A2 1—wi+ WAl

B, ()= (0" 437+ %+ + 31 +0)/(1 =2 (1 =-2%)
X (1 =A%),

3. INTEGRITY BASES FOR DOUBLE POINT GROUP
POLYNOMIAL TENSORS

The form (3) of the generating function B, ,(»)
indicates that the most general (T',, T',) tensor can be
expressed in terms of a finite number of “elementary”
(T,, T,) tensors E{?) corresponding to the terms A* in
the numerator of B,  {)) and a finite number of elemen-
tary scalars 7{¢’ which correspond to the denominator
factors 1 —x¢?. The degree of the elementary tensor or
scalar is the exponent of A in each case. The elementary
tensors E{*) are said to form an integrity basis for
the general (T',, T' ) tensor, which is a linear combina-
tion of Ef,’,)n with coefficients which are polynomials in
the scalars /%', In particular E{*) is the scalar which
corresponds to the term X? in the numerator of B, (\).

To determine an elementary (T, T',) tensor, let its
components be arbitrary polynomials of the required
degree in the components of the I', tensor and ask that
it be transformed by I", when the components on which it
depends are transformed by I',. For this purpose it is
necessary to apply only the generating elements of the
group. The explicit generating matrices we use for odd
IR’s of dimension greater than one are given in Table
VIII; those for even IR’s are found in I. For a one-

dimensional IR the matrix is the character, When there
is more than one (T,, T',) tensor of a particular degree,
the additional criteria of linear independence and
(hopefully) simplicity must be invoked.

We give below the results of our computation of the
scalars I\ and tensors E*) . with T, odd, for the
double groups ‘C_, @D ‘T and some cases of ‘0,
The superscript p or ¢ may be omitted where no con-
fusion can arise, or an additional subscript may be
affixed to distinguish two elementary tensors of the

same degree,

The components of the T, tensor are denoted by
n,B,v, -, and correspond to the rows 1,2, 3, --- of
the generating matrices in Table VIII.

A./?C_ tensors

Since “C_ is isomorphic to C
given by Eq. (40) of I:

2qs the tensors are those

L=qa, I (11)

— G — y?
n=0% B =at

@ and p are defined by Eq. (7). T, is not
restricted to odd IR’s.
B. ¥/ D,, tensors

For »n odd, the IR’s T', and T', are odd. The elemen-
tary scalars and tensors based on I', or T', tensors are
then

TABLE III. Polynomials det(1— A A,) for the double octahedral group.

N, 1 1 6 6 6 12 8 8
& Class ¢ c} G, Cy c; o} C, lofd

T 1= 1—-2x 1-2 1-2 1-2 1-x 1-x 1-2

I, 1-2 1—2 1-2A 142 1+A 1+x 1=2A 1-A

Ty (1=2)? (1= (1—2)? 1— % 1-22 1—A2 1+n+ A 1+A+A2

T, (1—2pP (1-2pP (I=A+N 1+ -+ (1+01+2a%) 1 —=-221+a) 1-A3 1-2%

T (1-2)? (1-292 (1= +22 =M1 +2%) (1=2(1+22) (1=-0a+n2 1-23 1-2°

T, (1-20? (1+2)? 1+ 1—VEr+A2 1+VE2A+ A 1+A2 1+a+al 1-x+2l

Ty (1-2)2 (1+2)2 1+22 1+V2n+ A2 1=v2xa+2a2 1+22 1+A+A2 1=a+2a?

T, (1-2)* 1+ (1+22)? 1+28 1+ (1+22)2 (1=21 =28 @+(1+23)
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13:14:0!4’ E Ez 4= ; (12)
E3,3:E4,4:(1, E3,4:E4,3 =n°.

We next give the elementary scalars and tensors based
on I tensors, 5<m<n+3, m odd. a and p are related
to m and ¥ by Eq. (10); a is even, and 3a has the parity
of n. [x] denotes the largest integer which does not
exceed x.

1(4) 6 If,lu):(la+(—l)"3",
Ee) = aplae - (- 1),

Bf,= 0, Big= o (- 17,
E;t’{lZ):al/Z + (_ 1)[&/4184/2,

E:(}a’rg%.?) :aﬁ[aa/z _ (_ 1)[a/41‘Ba/2],

E;?42)20°/2 _ (_ l)la/élba/z’

E(a/2+2) 01;3(01‘/2 + (- 1)a/4pa/2),

<( 1)(’/215")’ lsksn-1,

, n+ls ks2n-2,
[p/ZIO[

ot
% (- 1)“’/2];5"> l<sk<n-1,
Eb+)_

<(p) —

Tvm

rem Bﬂ
( 1)ie/21, > n+ls<s k<2n-2,

gest )
( YL(p+1) /21 4n o= ,,) l=sk<n-1, 17
)
Bt -
a?
<( 1) [(M)/zlmﬁ -,) n+l< k<2p-2,

2= p
—1)[e=1) /2)em qam lsksn-1,

Bl =
((pg::pzp,,ga p> n+lsxk<2n-2,
where
k=p0m =404 2 (18)

C. ¥ T tensors

The degrees of the scalars and tensors based on the
odd IR’s, I',, I',, I',, of ““T may be read from Table VI.

For the elementary scalars we find
I9=a®8-ap, I[P =ao®+ 140" + 57,
I = 1% — o _ 24V3a232 + g
19 =1 = apla® - i),

EJY = (2 + ) (a® - 346" + 7).

The other elementary tensors based on T, are

(15)

E}) =o'+ 2V3ia?8 + g,
E{) = o -4Y3ia®8% - 1008 — 4V3 ia?65 + 47,
Ej)=a® -2V3 ia?p? + B,
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TABLE V. Generating functions for tensors based on odd IR’s of the double tetrahedral group.

I,
T, 1 T, Iy Iy I I Iy Denom.
T 0,12 4,8 4,8 2,4,62,8,10 1,5,7,11 3,5,7,9 3,5,7,9 6,8
T 0 8 4 2,4,6 5,7 1,3 3,5 4,6
Iy 0 4 8 2,4,6 5,7 3,5 1,3 ,6
TABLE VI. Generating functions for tensors based on odd IR’s of the double octahedral group.
T, )
T, Ty I, T Iy Ty Iy I, Iy Denom.
T 0,18 6,12 4,8,10,14 2,6,8,10, 4,6,8,10, 1,7,11,17 5,7,11,13 3,5,7,9°, 8,12
12,16 12, 14 11,13, 15
Iy 0,18 6,12 4,8,10,14 2,6,8,10, 4,6,8,10, 5,7,11,13 1,7,11,17 3,5,7,9°, 8,12
12,16 12,14 11,13, 15
I's 0,4, 642, 2,42 6 43,65, 88, 22,4365, 2,45, 6% 3,54 7%, 3,547, 1,34, 5%,
84, 104, 82, 10%, 108, 125, sl 10!, 810 101, 98 117, 98 117, 72 ol 1112, 42 6,8
122,14,18  12%,14%,16 14 128,143, 16° 128,14%,16 13,15 134,15 138, 151, 17
TABLE VII. Generating functions for tensors based on odd IR’s of the double icosahedral group.
I T T T T T D
T, Ty Ty 3 4 5 1 7 lg 9 enom.
T 0,30 2,10,12,  6,10,14, 6,8,12, 14, 4,8,10,12, 1,11,19,29 7,13,17,23 3,9,11,13  5,7,9,11,
18,20,28  16,20,24  16,18,22, 14,16,18, 17,19,21, 13,1517,
24 20, 22, 26 27 19, 21,23,
25 12,20
Ty 0, 30 6,10,14,  2,10,12, 6,8,12,14, 4,8,10,12, 7,13,17,23 1,11,19,29 3,9,11,13, 5,7,9,11,
16,20,24  18,20,28  16,18,22, 14, 16,18, 17,19,21,  13,13%,17,
24 20,22, 26 27 19,21, 233,
25 12,20
Tg 0, 8?, 102, 2,4, 6%, 2,4, 6%, 2, 4% 69, 43,65, 88, 3,7, 94, 5, 7%, 9, 1,328,067, 7, 2,55 78,
122,20 84,109, g4 108,124, 8,101,125, 10%, 125, 114,159, 114, 198,15 97, 117,134, 98,118, 138,
124, 14%, 143, 16,18 145,16%,18 145, 16%, 15 15%, 172,19 15%,17° '
16, 18 4%, 6,10
Iy 0,4,65,817, 20,45, 620, 22 45 620, 2,48 6% g9 2 4@, 558,78, 5, 56,70, ah ol e, o 5%,
1022, 1933, 842, 10™ g42, 10T 109, 12125, 8B, 10119, 9%, 115, 939, 11%, 978 11114, 760 gti4,
1434, 16% 199 14104 1993 14104 110 36125 1190 14188 1367 86T 1367, 1567, 1382, 1582 1110 132%
1822, 2017, 16%, 181, 16%,18%,  18%, 20%, 16159, 18119, 1754 1939 1754 1989, 171l 197, 15203 17199
25%, 24,28 20122220, 201,222, 22%8 248,26 207,22, 217, o8, 25 2123, 238 25 2140, 2316, 1911, 2150,
245, 267 245, 26" 241, 26 254 238, 258,27 45,6%, 10
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TABLE VIII. Generating elemeunts for odd representations of

@p_, T, and ‘90 of dimension greater than one,
Group Represen-  Representation generating matrices
tation

®p, T, expimilr — 4)/n} ) 0 i
¥=5,7,°°¢ 0 exp{—m(r 4)/n}

A+ f—1i z) (0 -'>

2 11 -7 0
Iy w(l+z)( ) <0. —61)
r, 2(1+z) (—z tl) (0. —Oz)
140 (=i =1
2 “7 1

@y r5

L
(d)o rs 715—(2 11)

T -1 f1i 1+ f=i =1

7 VZ \i 1 2 \-¢ 1

1 V8 ~-v3 —§

1 V3i -1 i —=V3

Ty A V-3 i -1 VB

—i =V3i V3 1

~1 3% V3 -

| ~V3 i =1 V3
1+1

4 Y~V3 =i -1 -V3

-1 =vV3i V3 i

Ef)=qa®+4vV3ia® - 108! + 4V3 ia?° + g7,
@~ 2ap(a® +4°)

EZ =1-ila?+ )], E{l=|2iap®-p) |,
2a8 ot~ g
(2% < Bz)a 4‘1262(’12 - )
Efl=\i(a?+p)?], EEP=|_i(a® -t -8Y],
8a°8° ~2ap(a®+ 2P
803,33((12 +B2) 1601454(012 - 8%
E@ =1 2iap(a® - ) E(Q =} —ile® - g)(a’ ~ 5
- (a? +p?P(a* - B 20p(c®+ 8%
o 2 - 5ap?
Eéls)— s 5555): 3
8 B’ —5a*p

_ [ 8+ 0t ] pan _ [ B - 220767 - 11a%°
T ma’ =Tt T T o et 422078 + 11a%60 )
£ _ [/53+\f§irgzﬁ] £ [q +2VB 40’ + a

5 _a,f!__\/glaBZ 5 645 ,35+2\/.~2Q2,33+014B

18y __ zpl18) __
l Ex,s —E1,7 =

The other elementary tensors are as follows:

£y 37—3\f§ia265—5a“63—~/§ia6ﬁ]

657 |- o" +3V3ia®p2 + 5033 + V3iapt )’

oy _ a9—4w/§ia7{32-10a564—-4\/§ia3[36+aﬁg]
Egs= g-4\/§ia2ﬁ7—100{4ﬁ5~4\/§ %33+ a®s)’

E‘3>&[ﬁ’3“‘[§iazﬁ ] ) [015—2\/31'03/324»0154]
TyS s

P+ V3iaf? 757 8% -2V 35028 + atp
)= B +3~/_za2,85 5o’ + J?Iia%]
~a' -3V3ia®BR+ 508t = V3iag')’
B = 0 +4V34a7p% - 100°% + 4V3ia’s° + af®
B +4aV3ia?s - 108 + 4V3 ix®s + a8 | (16)
The IR’s T, and T, are mutually conjugate. The
elementary tensors based on them are
EM=E,  ES=ES,
E(4) E."245) , EM) E(fs) ,
f— of ~ af - B
EZ =|-iv*(a®+5Y) |, EX =]iw(a®+ )|,
L 2ap 204
[20%(a% + af) 20(a*s+ ap®)
E& =] 2i(a®p -~ of®) |, Ejf}=|-2i(a®p - ap |,
[ wl(a® 5" w(at - %)
(o - g% (a® - g%y
ES =1 ila2+@2y|, ES)=|-i(e®+p2)],
Ba’s 8a®p
ES)-ES), EQ-EQ,
EQ=E), E=E,
= et £,
ESI=ER, EO-E,
Ef4=ED, EQ-E,
B =)= B, an

An equation like E")=E{") in (21) is meant to imply only
that the dependence of the components on «, 8, -+ is
the same on both sides of the equation; the variables,
however, have quite different meanings on the two
sides.

41 O tensors

The degrees of the scalars and tensors based on the
odd IR’s, T, I',, Ty, of ‘YO may be read from Table
VII. For reasons of space we give here only those based
on the conjugate IR’s Ty and I',,.

The elementary scalars are
1(8) :1(8): aS + 14a4/54 4 BB’
1112) a bZ _ zaﬁﬁﬁ + aZbLO.

alWB - 3401335 + 34a5b13 -

1(12)

af’.

E‘S) E\((S),_as/J CY/J , E;lé)_E;f?,):an—%asB“—33a4/38+[512,
E“":E‘4’:[\/‘§(aq+6azﬁz+b‘i) EP) =E®) = [‘/3(&8+4016/52~10014b’4+4a2ﬁs+Ba)
3,6 3,7 —3(&'2-‘,82)2 3,77 aﬁ‘lzafiBZ_10d4i34__12a266+38 H
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(2? - ?Y ]

(10) _ (10) 5 5
Faw =55 (ap—ab)[ﬁ(a“+6a282+p“)

5 -120%% -~ 10a48% = 122" + 3°
By =E37 = (o~ "‘b)[r( "+ 4057 ~ 10a4p" + 4’3" + 47’

az_bz QG—3Q432+3&234—88
EZ=EZ* = -ila®+ ), EQ=E i+ 308 + 3026 + ) |,
L 208 8a’s

[ (78 + o582 + Ta®8® + af)
F(B) E(B)* —a7p+7a5ﬁ3—7a355+a[57
- o® 4 38

.

o' - 5a°6° + 10a°8" — 1006 + 50%8° - p° ]

E;13)~E”°)* (o’ + 5B +100%8% + 10n485 + 528° + 510) ,
l: 32055 i

[ ”B+5a9{33-607b5 887+ 508 + aft |

Eq(l:) — (12)* — 116 SQQB'& 6 b5+6a587+ 5a389_al311) A
4(_ a1052+ azﬁm) B

15{3 + Ta'®B® + 21a'6° + 99087 + 990 4° + 21 P + Tap™ + apt®
Eil: E(Ih)*_ 1=./ 7(!”'1‘*210[11#5 9901937+99a 139 21(1"#”“%701 pl:} aﬁb) ,
1814024 + 14" + 51
2(a’B + ap®) af +5a%p? - 5a?pt - ° A8 - &5 - 0¥ +
Eopyr=| =8 | mmo| —aetara) | EmeEgre] sty |
2i(a’8 - ap?) —i(a® - 5aB% ~ 5u2B* + 8" i(- "5 -a%3+ a3 +af’)

10 3a%8° +14a%3* - 140*6° + 304" + B*°

EUO):E;S)*: 16(&7[334‘0’3)37)

5,6 ’
i(— o+ 308[32 + 1403634 + 14(14;36 + 3012}38 - [310

auﬁ—3(19}33"’207}55+205I37—3(13ﬁ9+0!ﬁ11
E(IZ) E(IZ)* — 8(&864 _ aqﬁs) ,
‘(0(11[34* 3(1953‘4"2(1735—2&5137—3&3[39—a’ﬁu)

[ @i+ 50" + 90105 + 69a°8° — 6905B° — 9aiBl0 — 52ptE — M
EQY =B Y% = ~ 4B +150°F° +150°6° + ap'?)
|- ila¥ - 501282 + 91031 _ 69018[36 ~ B9a%p8+ 9,14510 _ 5(12312 + 314)

8T+ 1a%8?
sm=en=(5]  Em-En={0 )

EQD . pany [oz“’p -6’5+ 5(1239]
6,6 Te?T T

@B - 6a°6° + 5o

EMD = E;1;>,[°‘ + 2805 +198a°8° + 28a°6% + ozﬁ“‘]

BY7 + 284 + 198a339+ 2802 + al®B

015~5a 4 ob _az 5
E‘5’ E(s) l: B]’ E"')—_—E”’:[ B B]’

P ~ba*B 746 6,7 aﬁs—asﬁz

80 J. Math. Phys., Vol. 20, No. 1, January 1979 P.E. Desmier and R.T. Sharp 80



0D _ pan _ 511-22(1467—11&%3] EN® _ pas) _ al® — 26a°B* - 39a538
746 647 au - 22&734 - 110338 9 76 B,7 Bl.’s - 26&439 - 39(1865 ’
a’ a‘+ V3 (30°8% + af’)
-V3a? Zﬁaaﬂz 5048 - g7
E;?é:E:;?;— ‘/3(1[5 ’ ngé:E:}?;: _zﬁazl’:! ’ ng)S:E(BZ';z 5&334—627 ’
BS - a[54 — b v/—3'(30255 + Q,Sﬁ)
[__2\/3(301653 + OIZB7 4\[3(a633+ a2

a®-8a°p* - ap®
~8+ 88+ a3
~2V3(3a3p% + a78?)

(9a _ [(Ne (9)b __ F{9)b _
Es,s‘—Ean'— Ee,s —Es,v =

[am + 8078+ Ta%p®
-2V3 (Ta®8 + a28°)

~2V3(Ta85 + o) |’
Bll + 8(14[37 + 7(!8[33

1) _ p(11) _
E Es,v =

(13) _ p(13) _
8y6 — ES,S '_EB.7 -

r8\/§(a13ﬁ2 +2&9b6 _ 12&5[5101" 0514)
BY5 + 4302613 - 15906 + 51037
al® + 43082 - 15918 + 510788
L8f§ (aB™ + 2086° — 1201965 + a1%6)

(15) _ p15) _
Eg: ._Ea'7 =

4. DOUBLE GROUP BASES OF SU(2)

It is desirable to construct basis states of SU(2),
reduced according to its subgroup ‘©°G, where ‘OG is
any double point group. Since the subgroup representa-
tion and component labels take only a finite number of
values, they do not “count” as labels in Racah’s sense.
There is thus one missing label.

As usual there are two complementary approaches to
the labeling problem. One is to construct a missing
label operator. It should be a ‘4’G scalar which is a
polynomial in the SU(2) generators. Since there is one
missing label, there should be two functionally inde-
pendent missing label operators in each case.?

The missing label operators may be read from the
results of Ref. 1 for the groups ’C_, ‘D, ‘'T, or
‘@0, They are just the C,, D_, T, or O scalars (a G
scalar is also a ‘’G scalar) formed from L, L, L,
which, of course, transform like x, y, z; in each case
the quadratic scalar Z? should be disregarded. Thus we
find the following missing label operators:

@C or C,: L, Li+L7,
“@p or Dt L% L%+L", 20)
@for T: LLL

y 22

Door 0: LLL

Ty e?

4 4 4
L1+Ly+Lz,

Li+L}+L;.

It is understood that the operator L.L L, should be

symmetrized with respect to the ordering of the factors.

For ™ or I, according to the generating function

B, ,(x}, the two missing label operators are of degrees
6and10in L_, L , L, Another, of degree 15, is the
square root of a polynomial in the lower degree scalars
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a® - 10a°8* + ag®
- B°+10a%8° —~ B ’
~4v3(a®B%+ o)

a'?B - 60%6° + 5t

\/5(01"1[12 +2a78°% - 3a%B°)
- V3 (%" +2a°8" - 328 |’

_aﬁ12+6a5ﬁ8_5a9ﬁ4

(19)

rand L? For a more detailed discussion of the labeling
operators see Bickerstaff and Wybourne, ®

We now turn to a second approach to 'G polynomial
basis states for SU(2). Such states are already con-
structed in Sec. 3. They are just the components of the
polynomial tensors described by the generating function
B_ (), where T is the representation of ‘“’G contained
in the j =3 (spinor) representation of SU(2).

The j=3 IR of SU(2) contains the following represen-
tations I'; of the double point groups:

r,=T,&T,, for ‘9C,
for ‘D
for 7T,
for 40,

for ‘@1,

=T,
=T,
=T,
=T, (21)

Except for ‘°C,, T'| is irreducible, so the polynomials
are already given in Sec. 3 for ‘D, ‘T, and ‘¥0.

For ©C | the Wigner monomial a*g’ is already an ir-
reducible ¥’C, tensor, transforming by the IR I',, where
7 =(a = Blpoqan+ 2.

As an example let us discuss ‘4’T in more detail. The
SU(2) basis states are

(E®), (%6 - af*)(a® + 1408 + 8°F, (22)

where (E{*)), denotes the / component of the tensor E¥*).
The SU(2) IR label j is one-half the degree of the

polynomial:
j=4(p+ 6a + 8b). (23)

When j and p are specified, @ and b are not independent
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and one of them may be regarded as the missing label.
The basis states (22) are not orthonormal in general,
but have the advantage of being analytic. The even states
(7 integral) constitute a convenient basis for the SO(3)

O T scheme, It is no accident that the generating
function B, (), with T, even, is equal to (1 -2%)B, ,(x%).

The states described here lend themselves to the cal-
culation of generator and finite rotation matrix elements
as well as reduced Wigner (or Clebsch—Gordan) co-
efficients in an SU(2) = ‘DG [or SO(3) 2 G] basis.

5. CONCLUDING REMARKS

The methods employed in this paper and in I can be
applied to construct polynomial tensors of arbitrary
degree in the components of any finite group tensor.

The construction of SU(2) > 4’G basis states effected
here for a double point group ‘’G can be extended to
find analytic finite subgroup bases for any continuous
group. The starting point is a generating function for
the weights contained in any IR of the continous group.®
Such a generating function is converted to a generating
function for finite subgroup IR’s by the methods of I
and this article and leads to the determination of an
integrity basis for subgroup states. This opens the
possibility of constructing the Racah algebra (generator
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matrix elements, coupling coefficients etc.) for the
continuous group in a finite subgroup basis.
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Higher order modified potentials for the effective phase

integral approximation?
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Higher order modified potentials for the effective phase integral approximation are derived from first
principles. Application is made to computing eigenvalues for a nearly free wavefunction in a lattice

potential.

I. INTRODUCTION

Recently the phase integral approximation has been
modified by incorporating an energy-dependent modified
(heretofore effective) potential that is consistent to first
order in potential.' This modification extends the
domain of applicability of the phase integral approxima-
tion to longer wavelengths., When applied to the geo-
metric theory of wave propagation, this modification
generates a wavelength dependence in the consequent
effective index of refraction which may be used to de-
termine the stationary ray paths.? Herein from first
principles, we develop and investigate higher order
terms of the modified potential. While we use a lattice
potential for continuity with first order results® where
band implications were discussed, herein we concen-

trate on higher order techniques and not on band aspects,

and without loss of generality we use mostly energy
quantizations that are centered in the allowed energy
bands.

In Sec. II we develop the higher order terms of the
modified potential for a general potential, make
application to the lattice potential appearing in
Mathjeu’s equation, and illustrate numerical accuracy
with examples. Section III presents a comparison to
Froman and Fréman’s expansion.

Il. EXPANSION OF THE MODIFIED POTENTIAL

Let us express the time independent Schrodinger
equation in one dimension, x, as

yY(x)

= +/—2[E AV(x)] ¥(x)=0, (1)

where as usual ¢ is the wavefunction, u is mass,
77=1.0545887x10%" erg sec and £ is energy, but where
an explicit expansion parameter A is associated with the
potential V. The solution to Eq. (1) may be found by
substituting

“1/4
zux)f{%é |E - AW(E, 1, x)J}

Xexp(fif‘{;g [E = AW(E,\ x)]} dx’),

where Wis our new variable. Wmay be identified as the
energy-dependent modified potential (previously identi-
fied as effective potential')., This leads to the nonlinear
differential equation for W(E, X, x),

A8upported in part by the Independent Research Program of
the Naval Ocean Systems Center.
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_ R _W:_ 52 MW')?
W=v- B E - AW ~ 321 (E-AWE " (2)

For |AW| < E, Eq.

ﬁZ w" (KW)"
V=V-SE ®\E

57 (W’)Z 4 <>\W>"
- — 1+ - . 3
2rt \E nL:O( n |\ (3)
Let us also expand W in a power series of A as

(2) may be expanded as

W=W, + \W, +X2W, - -

and substitute this into Eq. (3). Upon equating all co-
efficients of like powers of A, we have that®

W”+%ILWO_ g‘; BV, (42)
L, . 8L W Wy 5 (W)
Witgr EW, =——t4-0 -2 0, (4b)
. 81 - WiW, Wwy 5 wiwy wiwy
Witgr EWe=—3—"-—F "2 E E?
5 W (W)
-5 (4e)
L, . 8u W Wy _ WoWy  WWy 2w W, Wy
Wi b EWy=— =55 - E E?
_Wwy  wEwy A AAUAS
E? E¥ T2 E T4 E
_S w(wge 5 WoWgW{ 15 wo(wyy
2 E? k2 4 E3
(4d)
Wrr 8“’ I3
+ﬁEW f( n-1s Wn-2’ ey Wo) Wn-ly
Whay weny Wy WL, Wi o, WD),
n=1, 2, 3, oy (4e)

‘9

where f is a driving function. Equation (4a), the first
order equation, has been investigated previously.® It is
noted that the left sides of Eqs. (4a)—(4d) as well as the
general case, Eq. (4e), all have the simple form of the
reduced wave equation with constant coefficients while
the right sides represent inhomogeneous driving func-
tions whose entire components may be established
directly from preceding lower order results. Therefore,
the first few higher order results are easily obtained
while in principle all other finite higher order results
may be calculated directly, However, the convergence
of the expansion of the modified potential (over its
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TABLE 1. Calculated eigenvalues, a’s, of Mathieu’s equation, ¥”+ (o —2vycos2x)¥=0 for selected v and selected values of the
characteristic exponent v and for various truncations N of the expansion of the effective potential WiV (q x),

Characteristic exponent, v 0.3 3.5 4.5 5.5

v 0.03 1.0 1.0 1.0

o Rounded-off exact 0. 08950555848 12.294632 20.27600336 30.26710156
o N=90 0. 09004898232 12.298481 20. 27734259 30. 26768419
o N=1 0.08950548469 12.294749 20,27601384 30.26710329
o N=2 0.08950607239 12.294803 20.27601766 30.26710398
o N=3 0.08950555853 12.294659 20. 27600363 30.26710157

x¥-domain) cannot be assured for arbitrary forms of the
potential V(x), and in general all orders of W, will be
energy dependent,

In the specific case of the lattice potential appearing
in Mathieu’s equation, i.e., V(x)=2ycos2x with x=1,
(2u/K?) =1, and the associated eigenvalue being given
as a =E, the expansion for the modified potential for
the first four terms is given by

_ 2y cos2x

Wo=—T—oT" (5a)
Wi=gy |1t (5b)
W2:(—al_3—1? [coszx +‘%§%S(—§é} , (5¢)
Wiy {15 g ey [ 2
e e o
gemamleon)

where A =1{{45/(a — 4)]+ T}. As expected, W, has singu-
larities at @ =m?, where m =+ and usually also
m=1+1,22,..., £n¥1 which manifests the mth order
band gaps for the eigenvalues. This manifestation of
nth order Bragg reflection is innate for W,.

For relatively free wavefunctions (i.e., E> V), the
results of at least the first four terms of the expansion
of the modified potential, Eqs. (4a)—(4d), are in general
good. Let us illustrate by calculating some eigenvalues
a for the lattice potential appearing in Mathieu’s equa-
tion from the quantization of the effective action variable
associated with the modified potential, that is,?

f:; fa =W, A, )2 de=vr, lvi#1,2,3,---, (6)

where v is the given characteristic exponent (Bloch
wavenumber) which establishes the quantization, A =1

and {21/7%)=1. Let us define the partial sum of the
power series expansion for W(a, A, x) by N such that

W (a, J\,x):nEO W (a, x).

N

(M

Table I exhibits the computations of energy levels (i.e.,
eigenvalues) for various partial sums of order N of Eq.
(7) for various lattice potentials that are sufficiently

small to render nearly free electrons. While the calcu-
lations for N =3 show excellent numerical approxima-
tions to the tabulated values even for long (with respect
to lattice spacing) wavelengths, v=0.3, where the WKB
approximation fails, ' the numerical improvement is not
monotonic with N as the estimates for a with N=2 are
all inferior to those for N=1. Also for v=0. 3 and
¥=0.03, the N=0 estimate for « is inferior to the
plane wave limit (i.e., @ =1#); nevertheless, it has
already been shown' that for this case a more sophisti-
cated estimate based upon the expected value of the
Hamiltonian H, (i.e., a= [y'Hydx/[¢Tidx, where
p=(a’ = W)/ expli[*(a’ — W) /2dx’] where a’ is the
initial prediction for o as determined by f:, {7 —w)/?
dx = pn) renders the excellent value of 0. 0895063,

111. FROMAN AND FROMAN'S EXPANSION

As a comparison, let us examine a different expan-
sion for higher order terms for the phase integral
derived by Froman and Froman.* For Froman and
Froman’s expansion of order 2M + 1, the quantization
for the lattice potential appearing in Mathieu’s equation
is

JHOZ‘I an Q(X) d,\':VTT, lVl ¢1’2’3’“"

where @(x)=(a - 2v cos2x)*/? and the ¥,,’s are the ex-
pansion terms, For the particular case of the lattice
potential appearing in Mathieu’s equation Y, =1,

:-gq (— cos2x+-z— ésin"’ 2x ,

Y F 3

2

Y, :gg {— cos2x +Z§—2 [14 sin®2x — 9.5 cos?2x

TABLE II. Calculated eigenvalues, a’s, of Mathieu’s equation, ¥” +(a — 2ycos2x) $=0 for selected y and selected values of the
characteristic exponent v and various truncations of order 2M + 1 for Froman and Froman’s expansion of phase integral.

Characteristic exponent, v 0.3

Y 0.03

o Rounded-off exact 0.0895
o M=02 0.0952
o M=1 0.1272
e M=2 *

3.5 4.5 5.5
1.0 1.0 1.0
12.294632 20, 27600336 30.26710156
12,290901 20,27471022 30.26653458
12.294291 20.27593723 30.26708253
12.294591 20, 27599963 30.26710089

* Qutside domain of validity of algorithm.
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2For M=0, the expansion truncates to the WKB approximation,
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Y

g

(110. 5 sin®2x cos2x +Q—);, 138.125 sin"Zx:’} ,

Table II exhibits the computed energy levels (i.e.,
eigenvalues) for various orders 2M + 1 of Froman and
Froman’s expansion for the same parametric pairs
(v, v) as in Table I. In the case of long wavelengths
(e.g., v=0.3), Froman and Froman’s expansion is
divergent as the Y, ’s form series of inverse higher-
order § terms. In fact, the algorithm for computing «
is outside its domain of validity at v=0.3 for M =2,
Furthermore for M = 0, Froman and Frdman’s method
has the same restriction to short wavelengths as the
WKB method. In contrast, Table I shows good conver-
gence for the modified potential expansion in the long
wavelength case since the singular points of the modi-
fied potential expansion are the centers of the various
band gaps.

For moderately short wavelength cases represented
by v=3.5, 4.5, 5.5 with y=1 of Tables I and II, the
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action-variable computations for o with the two expan-
sions exhibit accuracy of comparable order. Neverthe-
less, for |yl << 1 and for short wavelengths, the modi-
fied potential expansion has the advantage with respect
to the expansion of Fréman and Froman since in the
latter expansion Y,,=0(y) for n> 1 while in the former
expansion W, = 0(y™'). Thus, in the limit that ¥ — 0, the
modified potential expansion has better convergence. As
the representations for an effective action variable that
are formed by the two different expansions appear to be
the analytic continuation of each other by correlating
coefficients of ¥" between the two truncated series,
different domains of convergence for the two expansions
are expected.

!E.R. Floyd, J. Math. Phys. 17, 880~84 (1976).

’E.R. Floyd, J. Acoust. Soc. Am. 60, 801—09 (1976),

3A preliminary development of this expansion was given in
AIP document No. PAPS 760128-01 (associated with Ref, 1)
on pages 16—17,

IN. Froman, Arkiv Fysik 32, 541 (1966).
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On nonlinear transformations for time-dependent polynomial

Hamiltonians
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A formal method is demonstrated for the transformation of polynomial Hamiltonians with time-dependent
coefficients to time-independent polynomial Hamiltonians. The transformation functions are themselves
polynomials in the canonical variables with time-dependent coefficients. These coefficients are determined
by sets of first order linear differential equations. The results apply equally well to multidimensional
problems. The work is a generalization of the author’s earlier work on time-dependent linear

transformations for quadratic Hamiltonians.

1. INTRODUCTION

In recent years there has been considerable interest in
time-dependent oscillator systems with Hamiltonians of the

type
2 . .
H(gpt)=Y A;(t)g’p*. (1.1)
j=0

The basic interest has been in finding an invariant for the
motion described by H (1.1). In essence there have been two
approaches. The first, based on the work of Kruskal,' was
followed by Lewis,? Symon,’ and Sarlet.? The second, more
recent approach, uses time-dependent linear canonical
transformations. The work of Giinther and Leach’ and
Leach®” on this subject has given a reasonable physical basis
to the problem of finding an invariant. It ought to be noted
that the results apply equally well to the general 2xn-dimen-
sional quadratic Hamiltonian.

Hamiltonians of the type (1.1) have been of practical
interest mainly in the discussion of a particle moving in an
electromagnetic field, for examie in the work of Courant'’
and Seymour."* As a quadratic Hamiltonian usually arises as
a first approximation to a more complex system, it is not
surprising that there is now an interest in the time-dependent
anharmonic oscillator. Without specifying the nature of the
anharmonicity, the problem becomes the study of a time-
dependent polynomial Hamiltonian.

The study of polynomial Hamiltonians has long been of
interest in the field of celestial mechanics, as witness the
work of Cherry.'2 There the problem is usually referred to as
the motion of a particle about a singular or equilibrium
point. The method of attack has been to transform the Ha-
miltonian to a normal form for which integrals are obvious.
The canonical transformations are of polynomial form and
problems of convergence arise. It is usual to discuss the prob-
lem in a formal way to demonstrate the possibility, if not the
actuality, of a solution. Gustavson'® has found that a trun-
cated transformation gives useful results in computer
applications.

The problem which we study in this paper is thus both
old and new, depending upon the area of application. We
shall demonstrate that a time-dependent polynomial Hamil-
tonian may be transformed formally to any other polynomi-
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al Hamiltonian (which may be time-dependent). The idea of
the equivalence of any two Hamiltonians of the same num-
ber of degrees of freedom is not new (cf. Kohler'), but there
does not appear to have been an explicit treatment of the
actual transformations involved.

For the time-dependent problem, the usual approach

"has been to use a time-independent generating function. We

shall show that a time-dependent generating function may
be constructed for the time-dependent problem. In fact a
time-dependent generating function may be used for both
classes of problem, but is of particular relevance to time-
dependent problems. The generating function method has
the drawback of not providing explicit formulas for the new
coordinates in terms of the old or vice versa. We shall show
that it is possible to approach the problem in such a way that
explicit formulas are available. We believe that this repre-
sents a considerable improvement. As the algebra is tedious,
most of our discussion will deal with the Hamiltonian of a
one-dimensional system. There will be an extension of the
discussion to multidimensional systems sufficient to indicate
the generality of our results.

2. ONE-DIMENSIONAL PROBLEM:
TRANSFORMATION OF THE QUADRATIC
TERMS

The general polynomial Hamiltonian describing the
motion of a one-dimensional system about a singular point is

Hpi)=3 S AN @1
r=2j=0

where (g,p) are the canonically conjugate coordinates and
the coeflicients 4 /(¢ ) are real continuous functions of time.
The possible existence of a coordinate-free term in (2.1) has
no bearing on the motion and is ignored. We assume that
H (g,p,t) is finite for all 7 and finite (g,p).

We separate out the quadratic terms in (2.1) by writing
2 _ . < r . )
Hgpt)=3 A%'p> 7 +3 S Ajglp"™. (22
j=0 F—3 j=0
The quadratic part may be written in matrix form as

H*(q,p,t)=3[q.pIM [;1, ] (2.3)
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where the 2 X 2 matrix M is given by
245, A1
= 2.4
A}, 24}

The quadratic part H?’(g,p,t ) may be transformed to (cf.
Leach?)

ﬁ‘”(Q,PJ)=§[Q,P]1‘7[g] @2.5)

by means of the linear transformation
o=l
=S . 2.6
[ P » (2.6)
The transformation matrix § satisfies the first-order differ-
ential equation.
S=JMS—SIM Q.7

where J is the 2 X 2 sympletic matrix. The transformation is
canonical provided

SIST=l. 2.8)

(For a proof that this is always possible, see Leach.” The
discussion in Sec. 7 is a generalization of the result.)

The equation (2.7) has a solution provided the elements
M and M are continuous functions of time (cf. Ince,’ pp.
71,72). In particular we may choose M to be a matrix with
constant elements. The generating function of the transfor-
mation is quadratic and so does not affect the higher terms in
H (g,p,t). Thus, after the transformation (2.6), we have

H(Q.Pt)=H(Q,P)+ Z EA'(I)

r=3j=

X(85:Q—8P) /(—S:Q+S\P) "
(2.9)
where H'»(Q,P) has constant coefficients and
S, Sz]
Sz[ . 2.1
s, s, (2.10)

As the summed part of (2.9) is of minimum degree three, the
transformation of H (g,p,t ) (2.1) may be discussed in terms of
the transformation of

Hgp)=Hgp)+ S 3 41)gp . @.11)
r=3;=0

We have emphasized this point because of the advantage it
gives us in later work. The systems of differential equations
which arise from (2.11) are linear, whereas those which
would have been obtained had we used (2.1) are nonlinear.
The reason for this is that, in the case of (2.11), it is suitable to
choose H such that H*'(Q,P) has the same functional form
as H?’(q,p) and so the first term of the transformation is
simply the identity. Asis explained in Sec. 4, by starting with
the identity, the nonlinear terms in any system of differential
equations belong to lower order coefficients than those
which the system is determining.
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3. TRANSFORMABILITY OF HIGHER ORDER
TERMS INDUCTIVE PROOF
We assume now that the coefficients of all terms up to

order n (>>2) have been rendered constant by a series of suit-
able transformations. We write

n+1
Hgpt)=H™ (@p)+ > 4]'()
/=0

Xq/p" '+ R (gpt), 3.1)

where H"(q,p) has constant coefficients and contains all
terms of order <» while R (g,p,t ) contains all terms of order
> (n+1). For the purposes of this discussion we use the type
two generating function F,(¢,P,t) so that

_ dF(q,P,t)
dq ’
3.2)

__dF(q,Pt)

Q JdP
Writing
n+ 1l
Fiq,P,t)=qP+ Z B (1)g" P+ 7k, (3.3)
HgP1)=H ‘")( aFZ) + 2 450
aq
n+1—j

n+1
><(P+ N kB (t)g"~ IP”“"")
k=0

oF,

Rlq,
+<q8q

n+1
) + ZBk(t)qu"“*k. (3.4)
k=0

Consider any term in H"(g,p), say C g 'p"~' where
0</I<r, 2<r<n. Since

n+1
p=P+ 3 kB, (t)g“ Pk,
k=0

(3.5)
n+1
Q=g+ > (n+1—k)B,(t)g"P" ¥,
K=o
Cr l r—1{
n+1 5 !
=cilo="3 wr1-kB, 00 P 4]
k=0
n+1 r—1
[P+ Y mB,(t)g" P T "']
m=0
=C;Q'p" ! +other terms. 3.6)

Ignoring coefficients and considering only the powers of Q,
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P, and ¢, a typical example of the other terms will be
Ql—i [qun¥k]iPrvl—j [qm—an+l—m]j’ (3'7)
where 0<i</,0gj<r—/, and i +;> 1 [since i +j=01is covered

by the first term of (3.6)]. Again making use of (3.5), the
leading term in (Q,P) is of degree

[—ititk+n—k)+r—I—j+jm—1+n4+1—m)
ESI+DIn—D+reon—142=n+1

since r>»2 and i+j>1. Hence H"(q,p) is transformed to
H™(Q,P) plus possible terms of degree >(n+1), where
H"X(Q,P) has the same functional form as H®(g,p).

We may write (3.4) as

H(g,Pt)= 22 ycC
r=2 j=0
—J

n+1 r
X[P+ ) kBk(z)qk*‘P"“*]
k=0

n+1 .
+ 3 A7 g
j=0

n+1-j

n+1 )
X[P+ > kBk(z)qk—*P"“-A]
k=0

n+1 |
+R(g.Pt)+ 3 Bi(t)g"P 't (3.8)
K=o
As we are seeking an H of the form
H(QPz)—z zc Q'P—'+R(Q.P1), (3.9)

r=2 j=

where R contains the terms of degree > (n+ 1), we have in
terms of ¢,Pt,

H(g.Pr)
_"i”zc*[ﬁ 2 (n+1—k)B, (t)g“ P * [P
r=2j
+R(¢,Pt). (3.10)

Extracting the terms of degree (n + 1) from (3.8) and (3.10),
the desired result is achieved provided

n+1
Cig > kB, (t)g“ P k1203
k=0
n+1
X P Z kB, (t)gk 'prti-k
k=0

n+1 . X n+ 1l . . k
+ Y A7 OFP Iy Bu(Og P
j=0 k=0

5_: n+1 kPn+l k+C2
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n+1
XP Y (n+1—k)B(t)g“P"~*
k=0

n4+1
+2C3 Y (n41—k)B ,(t)g*P . (3.11)
k=0

On equating coefficients, we obtain the system of linear first-
order differential equations

B ()ACU B ()+XYk+1) B, (1)
~C%(n+l—k)B,((t)~2C§(n+2—k)Bk,,(t)

=C{*' =457 t),  1<k<n,

B(t)+2C3B\(1)—(n+1)CIB(t)=Cs*!
B, (()+(n+1)CFB,, (1)—2C3B,(1)

1 i
=Coi =4, 00).

—A 8+1(t )’

(3.12)

This system has a solution since the 4’s were specified as
continuous. Clearly the choice of the C’s is arbitrary.

Thus we have the formal result that, by a process of
successive canonical transformations, H (g,p,t ) may betrans-
formed to H (Q,P).

4. SINGLE GENERATING FUNCTION METHOD

From the foregoing it is evident that the formal trans-
formation from H (g,p,t) to an arbitrary H (Q,P)canbe ac-
complished by a means of succession of polynomial generat-
ing functions. The process may be achieved in one step by a
single suitable generating function. The coefficients of the
polynomial generating function are obtained in the follow-
ing manner.

We saw in Sec. 2 that the original Hamiltonian may be
written, without loss of generality, as

H(gp.t)=H"(g.,p)+ 21 2 A{t)g p. (4.1)
r Jj=
The transformed Hamiltonian is
H(Q.PY=H>(Q,P)+ E Z ciQ/P . (4.2)
r=3j=
It is convenient to write
H>(@.p)= z AqPp),
4.3)

2 ) .
H'Z’(Q,P)= Z CJZQJPZﬁ.
j=0

Since the functional forms of H'*'(g,p) and H>(Q,P) are
identical, the coefficients are related by

A5=C3 A}=C3}, A43=Cj (4.9)
We propose the type two generating function
F{q,P,t)=qP+ E 2 Bi(t)¢P"” - 4.5)
r=3j=
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¢+ 3 3 DBy P,
r=3j=0

o “.6)

p=P+ 3 Y B[}/
r=3 /=0
The standard transformation equation

A@Pr)=H@P1)+ i’ig;’ﬁ @7

becomes
> 2B

r=3j=0

(OdP I+ S S AN
r=3 j=0
_i r(t)qz l 5 — z]j

H

2 ) 0 M
+ZA}q2’J[P+ Z ztB (t)g ~'P ]

[ iZ s—i) Bi(e)g PP [ P2,

(4.8)

The quadratic terms cancel. Collecting the cubic terms, we
have

3, . i 3 -
S B)O)gP I+ Y AX0g P
=0 j=0

3 . .
+A43g Y jB}(t)g’~'P
j=0

3 . .
+242%P ZjBf(t)q/’lP‘H

i q'P I +C3P

XS G BXt)g' P

/=0

oc 5 ) 1y . 3 . .
x|g+3 S - Bi@)g P [P +2C¥ S G- BX)g’ P, 4.9)
s=3i=0 =0
| J
Equating coefficients of like powers to zero, we obtain
~D-3C3 242 0, 0 qJIrBI1 [Ci—43T
—6C3, D+A42-2C3, 447, 0 B3 Ci—43
= , (4.10)
0, —4C3, D+24%2-C% 64} B3 Ci—4}
| o 0, 2% D+434%] LB3_ | c3-42]

where D=d/dt. This is linear in the B’s and, given the con-
tinuity of the 4’s, the system has a unique solution set.

The process of finding the B’s will always involve the
solution of an equation linear in the unknown B’s. From
(4.8) we see that there are terms which are nonlinear in the
B’s. However, when such a nonlinear term appears in a dif-
ferential equation, it will be as a known function. For exam-
ple, we look at the degree of the term with coefficient ( B }) 2
in the second term of (4.8). It is #+2>5. The first set of
equations containing such a term would be that which deter-
mines B ;.

5. DIRECT TRANSFORMATION APPROACH:
FORWARD METHOD

Although the generating function approach is of theo-
retical value in approaching the problem, there remains the
difficulty of inverting the function to obtain ¢ and p in terms
of @ and P. The presence of explicit time dependence in the
generating function makes the use of computer inversion

89 J. Math. Phys., Vol. 20, No. 1, January 1979

r
prohibitive. An alternative approach is to define g and p as

explicit polynomials in Q and P with time-dependent
coefficients.
The Hamiltonians H (g,p,¢ ) and H (Q,P) may of course

be arbitrary polynomials of degree greater than or equal to
two. To illustrate the method, we take

H(gpt)=3%g"+r)+ Z Z Aty p’,  (5.1)

H(Q.P)=4(Q"+P).

In view of our earlier work there is no real loss of generality.
The canonical variables ¢ and p are given formally by

5.2

g=0+3 3 B/(1)Q'P", (5.3)
r=2j=0
+ E‘, Z Ci)gp . (5.4)

We require the description of the motion by A and H tobe
equivalent. Differentiation (5.3) and (5.4) with respect to
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time and substituting for ¢, p, 0, and P from Hamilton’s
equations for H and H, we have

p+2 }:JA

r=3j=

r=ipi=}
P

2 B;QjPr._]-+jB;Qj74lPr+l~~~j

j=0

M8

r

I
L8}

—(r—)B[QIH'P 1], (5.5

a+3 S r—pagp

~
i
w
“.
i
o

__C;QJP"'j ——jC;Qj_lP’“’j

+(r—) CjQIT P, (5.6)

Making use of (5.3) and (5.4} in the left sides of (5.5) and
(5.6) we have the equations in terms of Q and P
S (B]Q/P™I 4jB;QI P+

2j=0

—~(r—]) Bj QP71

M8

r

it

~C;Q/P]

-3 Siaifor 5, 5 mee)”

r=3j 5=0i=0

{P+ uzz IZ CyQ'P*~ ’} g (5.7

S S (Croipivjcii et

r=2 j=0

~(r=) €@ P 4 BIQIPT )

=-5 3 r-p4; {Q+ 3. 5 Biop 1

r=13j= §=2i=

x|P+ uzz 12 crQ'p+- ’] (5.8)

Separation of the coefficients of like terms in Q and P
from (5.7) and (5.8) will yield systems of linear differential
equations for the coefficients B (¢) and C (¢ ). The form of
these equations is

M x"=f(4],B;,C}), (5.9
where
o =l
'l: > M:
* [c" =l K,
D 1 0
—n D 2
] o —(n—-1) D .
K,={ _ ) .« D n-1 0
. . . =2 D n
0 -1 D
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and D=d/dt. The nonhomogeneous term denoted by
£(A47,B],C}) isnot necessarily linear in the B’s and C's. As
r<n, s < n, and u < n, this does not affect the linearity of the
differential equation.

The requirement that the transformation be canonical
imposes a set of constraints on the B’s and C’s. A full discus-
sion of these constraints will be given in Sec. 7. At the mo-
ment it is sufficient to note that the constraints cause no
difficulty.

6. DIRECT TRANSFORMATION APPROACH:

BACKWARDS METHOD

If, instead of writing

q9=q(Q,Pt), p=p(Q.Pt) (6.1)
as in Sec. 5, we write

Q=0(g.p.t), P=Plgpt), (6.2)

it will be possible to express Hinterms of g, p, and z. Since we
choose H to be constant, H (g,p,t ) will be an invariant of the
motion described by H (cf. Leach’ for the linear transforma-
tion case).

For the purposes of our discussion we shall use the
Hamiltonians

H=3g+p)+ Y X 4jt)’'p", (6.3)
r=3j=0
=40+ P). (6.4)
We express the transformation as
Q=g+ > > Bj(t)g’'p", (6.5)
r=2j=0
2 z C;t)g’p . (6.6)

Following the same Ine of argument as in Sec. 5, we obtain
the following equations in g and p.

S S iBiaip I +jBq
r=2 j=0
—(r=)Bjqg*'p 7 ~Clg'p "}

> (=D~

Ms

r

I
w
-

i iz (is—ir)

s=3 =0

Ms
"'M‘

,
i

~
-

Xqi+j-lp rbs it 6.7

S S ACigp I +iCq

r=2 j=0
—(r—=)Cig’*'p" "/ +BIqg'p "}

=2

r=3j

A qJ ‘p r—j

I M'«

P.G.L. Leach 90



+3 3033 4i(s—in

j=0 " s=3i=0

~
I 28

Xq"“;lp rs—i—j—1 (68)

These equations are similar to those of (5.7) and (5.8).
The structure is simpler because the ultimate terms in each
are not as complex as before. Separation of the coefficients of
like terms in g and p from (6.7) and (6.8) will led to systems of
linear differential equations for the coefficients B [ (¢) and
C;(¢)- The form of these equations is the same as (5.9), the
equations being

3 =—(k+1) BP, +(m+1—k)By ,+CJ

—(m+1—k)47 " — Z(Iu—pv)B”A“ (6.9)
r=—G&+1) Cl  +(m+1-k)CY | —BY

F R+ ATH =S (u—pv)CPAL.  (6.10)
1

The summation denoted by X, is over those terms for which

I+p=k+1, u+tv=m+2. (6.11)

7. THE REQUIREMENT OF CANONICITY

When the generating function approach is used, the |

transformation is automatically canonical. This is not the
case with the direct transformation approaches. We must
impose the condition that the Poisson Bracket of the trans-
formation be unity. In this section we establish the con-
straints on the B’s and C’s for the transformation to be ca-
nonical and prove that these constraints hold for all time.
Before proceeding to a general proof, we look at two simple
examples to illustrate the principle of the proof. For the pur-
poses of the discussion, we use the transformations of Sec. 6.

Taking the Poisson Bracket of Q and P with respect tog
and p, the transformation defined by (6.5) and (6.6) is ca-
nonical provided

NgE

Z UBjg"'p" 7 +(r—)Clgp" "'}

+335 E (s —ir)

r=2s=2j=0i=

XB]Ciq™~ prs—izitl=g, 7.1

r

If

For example, a comparison of the linear and quadratic terms
imposes the requirements that

B}+2C5=0,

(7.2)
2B+ C2=0,
Bi{+3C3+2{B¥C2—BiC?} =0,
2B3+2C3+4{B3C2—B2C2} =0, (7.3)

3B3+C3+2{B3C?—B3C} =0.

The sets of equations satisfied by the B”’s, C*’s, B*’s and
C”s are, respectively,

— =R 2 3
D1 o+ —1 o o |[% [ ot
2 p 2! 0 -1 o B
0 -1 pt' o o —1]]B35? —Ai
——————— R e | B I B B (7.4
1 0 01t D 1 o0 C? K
0 1 0 ) -2 D 2 c? E
0o 0 1 - 2
= Y 1 D _cg.l L 343
p 1 0 0o ' —1 0 o0 o[
-3 D 2 0 | 0o -1 0 o0
0 -2 D 3 , 0 0 -1 0
0 0 —-1 D + 0 0 0 -1
________ -’. _— — e — e — e ———
1 0 0 0 «+ D 1 0 0
0 1 0 0 ' -3 D 2 0
0 0 1 o0 ' 0 -2 D 3
0o 0 o0 1 1 0 o0 -1 D
- —44 4 2190/11~3192A0 -
—3A‘: F4B Bl43—-6B4}
—24% 680A3+BZA3—432A
—A44 3B243 2B
=l----- +--—— - - - = 7.5
At 2C%41-3C3%43 7
24% 4C243— 2A3—6C2A0
3434 i 6C0A3+C2A3—4C J
- 44} = 3Ci4i-2C%4
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For the transformation to be canonical, the constraints (7.2)
and (7.3) must be consistent with the solutions of (7.4) and
(7.5). The general solution set of (7.4) depends upon six arbi-
trary constants and it is possible to select them such that, at
some time #,, the two constraints (7.2) are satisfied. Let

x,=B?4+2C% x,=2B}+C1 (7.6)
From (7.4) we see that
X|=—X,; X;=X. a7

Considered as a system of equations, (7.7) has a singular
point at (0,0). Thus, if the constraints are satisfied at r=1,,
they are satisfied for all z. Similarly, writing x,, x,, and x; for
the left-hand terms in (7.3) and using (7.5), we have

)h=—xz, )é2=2x1—2x3, X3=x2. (78)

The point (0,0,0) is a singular point and, if the constraints
(7.3) are satisfied at £ =1,, they are satisfied for all time.

The purpose of the two examples given above was to
illustrate the principle of the proof of the general result.
From (7.1) the coefficient of g* ~'p™ ¥ is extracted and we
write

X7 kBT +(m+1—k)CP_, +3 (u—pv) B{CL. (1.9)
2

The summation denoted by X, is over those terms for which
I+p=k, utv=m+4Ll (7.10)

Using the differential equations (6.9) and (6.10) we find,
after some algebra and careful attention to the summation
limits, that

XU =—kx ,+m+1-kx]7_,

— S (Gs—in x4, (7.1D)
2

where we have adopted the convention that x ' =0for k <0
and k > m. The x’s in the summation are of 1ower order than
x™ since s>>3. The system of equations represented by (7.11)
has a singular point at r=1, if the constraints x ;" (t,)=0 are
applied. Thus the constraints hold for all time.

We see that that the transformation defined by Egs.
(6.5) and (6.6) is canonical under the constraints given
above. The transformation defined by Eqs. (5.3) and (5.4)
may be treated similarly.

8. MULTIDIMENSIONAL PROBLEM

It has long been held that commensurability between
the coefficients of the quadratic parts of the Hamiltonian
describing a higher dimensional problem prevents the trans-
formation of a polynomial Hamiltonian to one of normal
form. We propose that this is not the case since the
Hamiltonians

H@p=33 (4i+pD) (0‘ 24""")’
H(z)(Q,P)=%ZCi(Q?+P12) (or ZCiQiP")’ (8.2)

8.1)
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where the C’s are incomensurable, are equivalent under a
time-dependent linear transformation.

The generalization of the work on the one-dimensional
problem to many dimensions is mainly a matter of coping
with increasingly complex algebra except for one feature.
The problem of commensurability has in the past lead to the
vanishing of coefficients of some of the terms in the transfor-
mation so that they could not be determined. We shall show
that every such coefficient occurs as its derivative with non-
vanishing coefficient. That this will be the case for each of
the three approaches used in the one-dimensional problem is
not surprising.

We do not intend to labor the point with algebra of
meaningless and repetitive complexity. Consequently, we in-
dicate the approaches for the case of the Hamiltonian of a
two-dimensional motion.

9. COEFFICIENTS OF THE GENERATING
FUNCTION

As a linear transformation may be used to convert the
coefficients of the quadratic terms to constants, we assume
them constant and of the desired form. The Hamiltonian is
taken to be

H (ql,qz,p],pz,t)

—‘—EA 2/p_/+2A02 2—/p2

+ i Z 2 (g g ipph (9.
r+r=3ji=0j=0
The transformed Hamiltonian is
g(Ql;QZ’PhPZ,t)

2 2 o

=Y C}UQiPT+ ¥ CPQPs
i=0 j=0
+ 3 Z S CrrQiQiPT IPs Y, 9.2)

r+rn=3j=05=0

where 4 2°=C2°, etc. The other A’s are at least continuous
functions of the time. The C’s need not be constant, but, as
was remarked above, there seems little point in transforming
from one time-dependent system to another. The type two
generating function is

Fz(qlansPl’PZst)

=qP +q.P,+

DI NIAT

r+r=341=045L=0

XqhghPy Py ©9.3)
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From the equation

an(ql,QZaPnPZ’t) (94)
ot

H(q1,92, P, Pot) = H(g1,q2, P, Pyyt) +

we have

2
> Cf’°[41+22 Y (i—i) Biig tqsPYT TPy "] P
=0

+ 52-:0 Cf(‘)'z{‘12+2 S (~i)Birgiq %PT*"'P;rlfiz}jpg—j

+§ 2 Cj’;?[q +3 3 3 (i) Biigiq Py z-psz—:z]

X {qﬁ'Z S —k) Biiigigy Py Py TR }j’P;uﬂ'.p;—jz
2 A% {Pl+ YYYiuBiigi e EP‘I'—"'P;Z‘B]’
+,~ZOAJ(‘)'2‘7 2 [P2+ XXX iBiiaie f‘Pi""'P;Hz]j
B AR —"

x|P+ XS kB atal Py RPE ]”+ S35 Biiglaspi Py ©9)

The triple summations are all of the form

7y [#
n{r=3j,=0/=0

As in one-dimensional case, (8.5) may be separated into polynomials of degree m (say) which
(i) are linear in the B [ for which r, +-r,=m
(ii) do not contain any B’s for which r,+r, >m, and
(iii) may contain B’s either linearly or nonlinearly for which #,+r, < m. For m=2 the terms cancel due to our choice of the
earliest coefficients. For m =3, we have on separation of the coefficients of like powers, twenty linear differential equations of
the type
Bjru:q‘{ 19+4 ?’2]2}3;.‘/:2 {C o —i)
+CYHn =R} B[+ 243G+ DB,

+24 9%+ DB 7 —2C3(n+1—j)B]"
——ZCO 2(r2+1 jz)B rry —=Cnri_gnn

Ji =17~ i Ji:*
We have used the convention that any B’s with j(j,) <0 or > r,(r,) are zero. For each B, r,+r,=3. This system, subject to the

usual conditions on the A’s, is integrable. For general m there will be ! +(m+ 1)(m +2)(m + 3) such equations.

(9.6)

We note that there is no problem concerning the commensurability of either 4’s or C’s since the coefficient of any B is never
zero.

10. DIRECT TRANSFORMATION APPROACH o= q,-f—z Y > Bir(t)ighp i e (10.3)

We do not wish to repeat the detail of Secs. 5 and 6, but s N e e
it is worthwhile noting that the direct transformation ap- =q+ Z 2 2 Cirdgipy ~ps (10.4)
proach applies equally well for higher dimensional prob-
lems. We illustrate the point with the backwards method. P=p + Z S > DI )ghghp (10.5)
Let
H(@ugoppot) Pr=p:t 3 5 Y Ejlatap i p s (10.6)

2
=4qi+gi+pi+p D+ A1 hglp  Ip i where 3,33 is
3
(10.1) " +§r,:=31,:o,,2::o

H(Q,0:,P,P) = X(Q2+ Q2+ P14+ P, (10.2) and 2,33 starts with r, + r, = 2.

93 J. Math. Phys., Vol. 20, No. 1, January 1979 P.G.L. Leach 93



Applying the standard criterion that the description of
the motion must be equivalent in either coordinate system,
we find that the transformation coefficients satisfy the sys-
tem of equations

B;:;('Inz_{_(kl.{.l) Bk +k.+1) z:gzﬁ-l
—(ml+ 1 _k]) B;:T):”i,f(z

—(ma+1—k)) BRI =D

=(m1+1—k1) A T"kj—l'mz’*'E (jlsl—ilrl)
1

XB[IAGE+Y (osa—ir) B]A T, (10.7)
2

D+ (k+1) Dy + k1) DR
—(m,+1—%k) D,’{fi”;,kl
—(m,+ 1 —k)D" |+ BR"

=—~(k,+ 1) A4 ;:'IR;ZH‘*‘Z (jlsl_ilrl)B;:j:zA ,sl'f:
2

+ Z (iZSZ—inZ) Blr\lI:ZA ';:;_:Z, (108)
2

together with similar equations for the C’'sand E’s. In X,
I+j, rangesto k,+ 1, 5,4/ 1ok, 1 +si tom,+2 and 7,45,
to m,. In X, the limits are reversed. The comparative sim-_
plicity of Egs. (10.7) and (10.8) is due to the simplicity of H
and use of the backwards approach. The forward approach
yields a more complicated nonhomogeneous term. If

m, +m,=m, the number of equations for each value of m is *
(m —3)(m?+9m+2). The number of arbitrary constants is
reduced by the six Poisson Bracket conditions

[thll =1, [Qth] =0, [QUPZ] =0,
(10.9)

[PerZ] =0, [Q;,PZ] =1.

[PI,QZ] =O,

11. INTEGRALS OF THE MOTION

From the examples of two-dimensional Hamiltonians
considered in the previous two sections, we see that the
structure of the differential equations determining the coeffi-
cients of the transformations is not significantly different
from those for the one-dimensional problem. We assert that
this will be the case for the general n-dimensional problem.

We are able to establish the formal existence of integrals
of the motion by choosing

A@QP=33 (07+P)). (11.1)

i=1
It is well-known that H possess n*— 1 constants of the mo-
tion linearly independent of H. These constants may be writ-
ten in compact form as an invariant matrix (cf. Leach’)
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Q

I= [g][QT,PTHJ[P

][QT,PT]JT, (11.2)

where J is the 27 X 2n symplectic matrix. The invariants
have the form Q,Q;+P P, or Q,P,—Q P, In terms of
the original coordinates (g,p), the #” constants of the motion
(including H') will be invariants of the motion described by
H (q,p,t) provided that the transformation equations are con-
vergent. If they are not, truncation may provide approxi-
mate integrals as was noted by Gustavson': for the time-
independent problem. Finally, we note that, if H is indepen-
dent of tir_pe, it is a constant of the motion not necessarily
equal to H (q,p,¢ ). In this case it would appear that there are
n*+ 1 constants of the motion although possibly H is some
combination of the I,(q,p,¢).

12. COMMENT

We have seen that there are three ways of approaching
the transformation from one polynomial Hamiltonian to an-
other. We emphasize that the transformations are formal
and that problems of convergence could cause considerable
difficulty. In much of this work we took H to be the Hamil-
tonian of a simple harmonic oscillator to simplify the alge-
bra. It may well be that, in a practical application, even if the
transformation is convergent, the number of terms required
for useful approximation is prohibitive. Better results may be
obtained if the coefficients of H are chosen to be the mean
values of the time-dependent coefficients of H. This is a dis-
tinct possibility if these coefficients are periodic functions of
time.

The transformation method adopted depends upon our
intention. A knowledge of the invariants may be more infor-
mative than a formal solution. It is possible that a knowledge
of the generating function will be of use in the study of the
corresponding problem in quantum mechanics. It has been
shown (cf. Boon and Seligman,'® Leach,* and Wolf"’) that,
for linear transformations, a solution of the Schrodinger
equation.

Hy=i# a_'/’ (12.1)
at
may be obtained from
Ag=in ¥ (12.2)
ot

by means of an integral transform. The kernel of the trans-
form depends upon the generating function of the corre-
sponding classical transformation. We suggest that there
could be a similar result for nonlinear transformations. As
this work on nonlinear transformations has shown, any cal-
culation is complex. The problem is currently under
investigation.
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Towards an invariant for the time-dependent anharmonic

oscillator
P. G. L. Leach

Department of Applied Mathematics, La Trobe University, Bundoora, 3083, Australia
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The Hamiltonians H = (1/2)(p 2+ q)+A(t)q? and H = (1/2)(P>*+ Q)+ Q?, where A(:) =1, are
related by time-dependent polynomial canonical transformations. Formulas are constructed for the
generating function F,(q,P,t) as well as for the direct relations between (Q,P) and (q,p). These
formulas are expressed fairly concisely in terms of time integrals. The form is seen to be applicable to all
polynomial transformations of time-dependent anharmonic oscillator systems.

1. INTRODUCTION

The motion of a charged particle in a time-dependent
electromagnetic field is of interest in plasma physics.
One of the simplest problems, that in which the field is
axially symmetric, can be reduced to a discussion of
the Hamiltonian (cf. Lewis®)

H=35p* +30%(t)¢?, (1.1)

where p and q are canonically conjugate coordinates.
The Hamiltonian (1. 1) and its invariant have received
considerable attention elsewhere.?s®

More generally, there are terms of order higher than
¢* and the Hamiltonian is

H=3p*+5w*()¢g* + Vig, 1), (1.2)

where V(g, £) is at least O(¢®) as ¢ — 0. An adiabatic
invariant series may be constructed for H(1,2) using
Kruskal’s method.* However, no one has seen a way

to apply his method to find an exact invariant, nor is
the Hamiltonian amenable to treatment by the use of
time-dependent linear canonical transformations. "
However, the extra potential V(g, £) can have an im-
portant bearing on the boundedness of the motion, hence
the relevance to plasma problems.

It would be of interest to see if the explicit time de-
pendence in V(qg, {) has any effect on the boundedness of
the motion and for that purpose it would be of value if
an invariant could be found for H(1.2). In this paper we
investigate one method of searching for such an invari-
ant. A Hamiltonian which can have unbounded motion is
one which contains a term in ¢* and so we shall discuss
the Hamiltonian

H=35p* + 50l {)g* + A(t)¢® (1.3)

[the sign of A(¢) is immaterial]. It is not necessary to
discuss as general a system as (1. 3) since, under the
linear canonical transformation

Q=p"q, P=~pq+pp, (1.4)
where p(t) is any solution of

B+ @ p=p3, (1.5)
(1. 3) reduces to

H=p2(3P* +5 Q%+ p°2@%). (1.6)
If the change of time variable

1= [o(t) dt (1.7
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is made, Hamilton’s equations become

aQ P 5y 2
i AP = A
=P, Gr=—(Q+30°2Q").

(1.8)
Evidently the discussion of the problem of H(1.3) is
equivalent to that of the Hamiltonian

H=3(p*+¢"+ M . (1.9)

It is this Hamiltonian which will be treated here.

The method used is that of polynomial time-dependent
transformations.® Since such transformations must be
considered as infinite series, difficulties with conver-
gence are to be expected. Although, in theory,® there
exists a transformation between any two Hamiltonians
of the same number of degrees of freedom, series rep-
resentations of such transformations need not be uni-
versally convergent (cf. Leach™). An a priori method to
minimize the possibility of nonconvergence is to select
a transformed Hamiltonian which as closely as possible
resembles the original, To this end we assume that
A(t) has a mean value of unity and, without specifying
the nature of its time variation, presume that it is of
limited variation about the mean value. Under these
circumstances we take the transformed Hamiltonian to
be

T3P @D+ . (1.10

The Hamiltonian (1.10) is time independent and, if it
can be expressed in terms of the original coordinates
q,p, will provide an invariant for H(1.9), As a first
step we show how to construct a generating function for
the transformation from H to H. The form of the gen-
erating function suggests a form for a direct trans-
formation between (g, p) and (@, P). This form is veri-
fied and the canonicity of the transformation is demon-
strated. Despite the simplifications in expression
which we have been able to make, the series remain
infinite and formidable. It may be that in a truncated
form they will be of some use.

2. THE GENERATING FUNCTION
Using a type two generating function Fy(q, P, f) so that

oF, aF,
p=5s =55 (
we write
«© r )
Fylg,P,)=qP+ 2, 2 Al P, (2.2)
r=3 j=0
© 1979 American Institute of Physics 96



By making the leading term the identity transformation,
in effect we are requiring that the A’s vanish when X{(¢)
=X(¢) = 1. Supstituting (1.9), (1.10), and (2.2) into

oF,

5 2.3)

p(Qapy [) :H(q, P, f) +
we obtain
E{A;qur-j +jA;qj'1P"1'j _ (r_j)A;qder-l-j}
=(1- N ¢ +355{(r = jXs i) gt Pt
- ijq ™I AT AT + 3 5 (r - ) Afg P
+325 23 (r =) s = i) A Afgitpree-t-id
+ Z—_‘IZ\/ Z;('V "'j)(S i) u—- k)A;A‘:A".‘q“j*kpnsm-s-l-j-h ,
(2.4

where each summation sign indicates summation as in
(2.2). Equating coefficients of like powers, (2.4) is
equivalent to

(ID+M)A" =V (2.5)

where D =d/dt, I is the (v + 1)X(» + 1) identity matrix,
M an (r+ 1) X (#+ 1) matrix with the only nonzero ele-
ments being

Mg i==(r+1=1), M; =i, (2.86)

i+l,4

A" an (r+ 1) vector formed from the A7, j=0,7 and v"
an (r + 1) vector whose elements come from the non-
homogeneous terms. In particular

0

vi=(1-2) (2.7

0
0
1
In general, v" contains A’s, but of index lower than ».

The coefficients A are found by the integration of
the system of equations (2.5). A general solution for
any » will contain (» + 1) arbitrary constants from the
solution of the homogeneous part of {2.5). As these will
feed into the equations for higher indices (through v),
they could represent a considerable complication in
practice. Since we are dealing with a generating func-
tion, all of these arbitrary constants may be set at zero
without affecting the canonicity of the transformation.
Hence we only concern ourselves with the particular
solution for the nonhomogeneous part of (2.5).

3. SOLUTION OF THE EQUATION
(ID+M)A" =vyr
The matrix M is skew-centrosymmetric, i.e.,
LML =-M, (8.1

where the elements of L are zero except for those
along the secondary diagonal which are all unity. There

exists a diagonal matrix D such that
D-'MD =N, (3.2)

where N is symmetric. The nonzero elements of D are
given by

172
g {7 .
d!".i*‘-:lj (7) s ]20’1’ (3-3)
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and those of N by
Njol,j :{(7"*'1-].)]}1/2:1\’1,;»10 (3.4)

The matrix N is of known type® and its eigenvalues are
+7, +{r=2),***, [£1 or 0]. Hence the characteristic
values of the system of differential equations (2.5) are
+ir,£i(r-2),***, [£i or O].

The solution for the nonhomogeneous part of (2.5) may
be determined by the method of variation of parameters.
It is

r/2
A" =ay(t) + 23 [ay;(#) cos2jt + by, (4) sin2jt] (3.5)
j=l
for 7 even and
(r-l{/Z
A"= 3, [ay(0) cos(2j+ 1)t +by,,,(4) sin(2i + 1) £]
=0
(3.6)

for » odd. The vectors a; and b; satisfy the requirements
Ma(t) =0,

Ma; +jb; =0, j#0, (3.17)

Mb, - ja;=0, j+0,
and
a+2:(a, cos2jt+i)2j sin2jl) =v", ¥ even
FAg01008(2 + 1) [ +byj,; sin(2j + 1) {]=v", 7 odd. (3.8)

From (3.7) it is possible to write down recurrence
relations for the elements of the a’s and b’s. In their
general form they are not particularly simple and do
not suggest an easy method for solving (3. 8). However,
the solutions of these equations for the first few values
of » when substituted into (2.2) suggest that the generat-
ing function has the form

Fz(q, P, )]
t
()P sin(t’ - ) + g cos(t’ — 1]’

o r
=qP+ 2 2

r=3 =0 1y

(3.9

The value of /, is that value of f for which M/) =1, We
note that
oF, X I

Kl N IR A Y
L

x{P cos(t' - 1) - gsin(t’ - )} dt'.

w 7 t
+ 25 2 f z';(/'){—j[P sin(t’ = 1) + g cos(t' = )]7-!
tp
X[P COS(/I - [) -q Sin(/’ - /)]rd-j
+{r - )P sin(t’ - £} + g cos(t’ - 5]’
X[Pcos(l’ = 1) - gsin(t’ = H]""}ar . (3. 10)

It is merely a matter of routine algebra to show that
this expression for Fy(q, P, !) satisfies (2. 3) and in fact
(2. 3) reduces to the definition of ¢ given by (2. 4) and
(2.5).

4. DIRECT SOLUTION

Although it is informative to have the generating func-
tion of the transformation, it is more convenient to
have (g, p) in terms of (@, P, /) or vice versa. For the
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purposes of this discussion we shall see how the in-
variant (@, P) may be written in terms of {(g,p, 1. We
formally define (@, P) in terms of (g,p, t) as

s
e

Q@=q+ Bi(t) g'p", (4.1)

r

W
X

.
it
=3

P=p+ Ci()g'p™. (4.2)

I
o~

s
s

i
-3

r J

Differential equations for the B’s and C’s are obtained
by requiring that the time development of the system is
equivalent in both (g, p) and (@, P) coordinate systems.
Proceeding in the usual way, we obtain the systems of
equations for the coefficients B} and Cj,

(ID+M)B -C' =,
(ID+M)C +B" =V,

(4.3)
(4.4)

where the notation is consistent with that used in Secs.

2 and 3 above. Here v=2,3,* " *. In particular, for
r=2, the nonhomogeneous terms are
0 0
v=|0], v¥*=-3(1-1]|0 (4.5
0 1

Equations (4. 3) and (4.4) may be combined into a single
system

ID+K)E =W, (4.6)
M, -r B’ g
K=lp | F=|g| v=|&|- @D

We note that, although we shall not discuss the form for
p and q in terms of (@, P, t), the equations have the
same structure as given here.

5. SOLUTION OF THE EQUATION
(ID+KYE"=0

In contrast with the generating function, the trans-
formation equations (4. 1) and (4.2) must satisfy the
requirement that

[QvP]PB(q,p):l- (5. 1)

Consequently ab initio we cannot ignore the contribution
of the homogeneous part of the solution of (4. 6).

The eigenvalues of K are either pure imaginary or
zero. This follows from the transformation

Dt 0 D o]h_[zv il]_.
[0 D“] K[O pl = L N] TR

where D and N are defined by (3. 3) and (3.4). As N is
real symmetric, the matrix R in (5.2) is Hermitian and
has real eigenvalues. Thus those of K are pure imagi-
nary or zero. The values which the eigenvalues take
may be found as follows. Suppose

(5.2)

Rz =)z, (5.3)
where A is real. Writing 27 = (x", y7),

Nx+iy=2x, -ix+Ny=2»Xy. (5. 4)
Eliminating y,

(N-M?x-x=0
<= [N-(=DI[N-(A+DI]x=0 (5.5)
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which has nontrivial solutions provided

IN-(x=1)1|=0 or |N-(x+1)I|=0. (5.6)
Hence the eigenvalues of K are A, given by
Ae=i(2,x1), (5.7)

where the Ay are the eigenvalues of N. For a given 7,
A¢ takes the values +{(r+1)i, +{(r-1)i(2),* ",
(+7 or 0](2) where the (2) indicates multiple eigenvalues.

The solution of the homogeneous part of (4. 6) will be
of the form

EY =a,,,18in(2% + 1) £ + Cy,0y cos(27 + 1) £
r-1
+jZ§ {[8;41 +12012) sin(2j + 1)

+{ey;m +dy at]cos(2j+ 1) 8,

E* =g, 5 sin(27 + 2) £ + €5, .5 cos(2¥ + 2) ¢

(5.8)

+ 2 {lay; +by;t] sing jt + [ey; + dyst] cos2jtt
i=1
+ ¢y + dof, (5.9)

for 7 greater than or equal to one. The constant co-
efficient vectors satisfy the requirements that

K"'am,l - (m + 1) cmd’ = 0’

(m +1) By +K™C a1 =0, m=2r,2v+1, (5.10)
Kbj - (j+1)d;1 =0,
(j+1) by, +Kdyg =0, 0™ (5.11)
Kajq—~(j+1)Cr1=—Dya,
G+Dagu+Kep=-dn, © 07 (5.12)
K27+l do:0,

(5.13)

2r+1
K ¢o=—do.

As the rank of the system (5. 10) is two less than its
order, &, and ¢,,; are describable in terms of two
parameters. For (5.11), it is four less and each pair
b;.1, d;.1 is describable in terms of four parameters.
The same applies for the homogeneous part of (5.12).,
For (5.13), two parameters are required for d; and two
separate ones for the homogeneous part of ¢;. Thus
for a given 7, 4r+2 parameters are required. How-
ever, the system (4.6) requires only 27 +2 constants
of integration. The cause of the discrepancy is found in
the inconsistency of the sets of equations (5.12) and
(5.13). A consistent solution is found only if all b’s and
d’s are identically zero. By way of example we indicate
the proof of this for the simplest case which is that of
(5.13).

Suppressing the subscript, the first of (5. 13) is

[1;4 ;;] [:;] =0 (5.14)
<= M*+DNd; =0, dy=>Md,. (5.15)
The nonzero elements of M*+1 are
(MP+D); ;= (1= 2)) v+ (2/° - 45 +3),
(M* +D); ;0=j(j +1), j=1,2,""*  (5.16)
ME+ Dy =r=Plr+1-)).
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The equation relating the odd and even elements of d;
constitute separate sets and we may write

d;=ae+df, (5.17)
where a and b are parameters and

€5.2=0, fo;54=0, j=0,1,""". - (5.18)
Using (5. 16) it is a simple matter to show that

ey = (7= 1)y,/2%1,

Fagez = r = 1)5,/2'51, j=0,1,""", (5.19)
where

1, j=0,
(T—I)Zj:{(r—l)(r— 3 (r-1-2j), j#0. (5.20
Furthermore

d; =Md, =— af + be (5.21)
so that

d:a[e]+b[f]. (5.22)

-1 e

Again suppressing the subscript, the second of
(5.13) is

[1}4 ;ll]c:-a[f]w[i] . (5.23)
Operating from the left with the nonsingular matrix
)
0 7
(5.23) becomes

7 emee ) [E]

The matrix M% +7 has rank two less than its order. The
first two rows may be reduced to zeros by elementary
row operations. This is achieved by the nonsingular
matrix U which has first and second rows,

(5.24)

1 1-3 1°3°5
1o 0 o9 0 Tr-20r=4)
3 35

The other elements are U;; =0y;,%,j >2. The effect of
U on the right side of (5.24) is to produce as first
element

a<1+%

and as second element,

3 7-1,35 @-1)(r-3)
b(1+§ 22 r(r-2) >

L35 =1 3),,,)
t9 4 7(r-2) ’

Since both terms in parentheses are positive, (5.24) is
consistent only if e =0=254. The proof for the systems
(5.12) is along similar lines.

Thus the solution of the homogeneous part of (4. 6) is

7

E™ Zg[az,-q sin(2j + 1) £ + €541 cos(2j + 1) ¢]

i=

(5.25)

and
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E2r01

Z}(aq, sin2jt + €,; cos2ji) + ¢, (5.26)

for the even and odd cases respectively.

6. SOLUTION OF THE EQUATION
(ID+K)E =w"

Again the method of variation of parameters may be
applied to the solution of the nonhomogeneous egquation.
From (5. 25) and (5.26) the solution will have the form

r

E = 22[ay;.1(8) sin(2j + 1) £ + ¢9;,1(!) cos(2j + 1) ¢]
=0

(6.1)

and

4l
E¥* = S3[ay,(2) sin2jt + o,,(2) cos2jt] + c,t) (8.2)

i=l

for v even and odd respectively. The vector functions
a,(#) and c;(#) satisfy the equations

ja () +Ke;(t) =0,
Ka () - je, (1) =0,
Keo(t) =0, (6.4)
2ilaga(t) sin(2f + 1) £+ €9501(8) cos(2i + 1) t] =W, »

j=1," (6.3)

even,
>5[, (8) sin2jt + ¢y, {t) cos2jt] + eo{t) =W, » odd.
(6.5)

This system is very similar to that of (3.7) and the
similarity suggests that an analogous form of solution
exists. An examination of the first set (that for »=2)
indicates that the nonhomogeneous contribution to the
series portion of (4.1) is

o LBy

r=2 j=0
had r
= % [t(') dt'[1(t') cos(t’ — 1) = 5(+') sin(t’ - 1)]
r=2 J=0

X[ p sin(t’ = t) + g cos(t' - ))[ p cos(t’ = 1)

-gsin(/’' -] (6.6)
and that of (4.2) is
2 2LCigp?
r=2 §=0

E E f dt’[u(8) sin(t' - 1) + (') cos(t’ - 1)]

= § =

X[psin(t’ — £} +geos(t’ - ][ p cos(t’ — 1)

—gsin(¥ - 1)], (6.7)

That this is so may be verified directly by substitution
into the original equations defining the B’s and C’s.

7. CANONICAL REQUIREMENT

The full solution of the transformation equations from
(g,p) to (@, P) coordinates is composed of the non-
homogeneous parts given in (6.6) and (6.7), a homo-
geneous contribution plus the identity. The homo-
geneous part contains arbitrary coefficients which feed
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back into the #’s and ¢’s of higher order nonhomo-
geneous terms. We shall see that the transformation
will still be canonical if these arbitrary coefficients
are all set at zero, i.e., only the terms in (6. 6) and
(6.7), together with the identity, are necessary for the
transformation.

The transformation is canonical provided
[Q9P]P5(q,p):1- (7.1)

In an earlier paper® we showed that if a time-dependent
transformation is canonical for some time /=1#;, then
it is canonical for all time. Writing the transformation
as

© L4
Q=q+2; 2 Big'p™,
r=2 §=0 (7. 2)
© 7
P=p+3, 2Cig'p,
r=2 j=0

where the summed terms are given by (6. 6) and (6.7)
respectively, it is immediately apparent that (7.1) is
satisfied at { =7;. Hence the transformation is canoni-
cal for all / and the homogeneous part may be ignored.

8. DISCUSSION

The expressions obtained here for both the generating
function and the direct transformation equations are not
simple, but at least they can be written down in a fairly
concise form. It may be that some other method would
yield a more closed solution, but, perhaps pessimisti-
cally, we doubt it. We note that the solutions given here
are valid in form for any Hamiltonian

H=3(p*+4") +Vig, 1) (8.1)

provided V(g, ) has a Maclaurin expansion whose first
term is cubic in ¢. In fact we may as well say Vg, p, t).
All that happens is that the vectors u and v have more
complex defining relations.

The value of the transformations obtained here de-
pends upon whether they converge. For time-independent
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problems, the convergence of similar series appears
to be exceptional (cf. Moser® and the references cited
therein). We have endeavored to minimize the possi-
bility of divergence by using the mean value of H for H.
The work of Gustavson®’ encourages us to believe that
truncated series may be of some use for sufficiently
small values of H (i.e., the invariant). However, the
form of the transformation equations suggests that if
X/) has a rational period, the transformation will blow
up in time as at least one term in the transformation
will be monotonically increasing in time.
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Percolation theory on multirooted directed graphs

D. K. Arrowsmith
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(Received 31 August 1977)

The multiroot connectedness P,, of a directed graph G between the vertex u and the collection of vertices
v ={v,,...,0,} is the probability that there are (directed) paths from u to each of the vertices v;, i =1,
...n, when each edge and vertex has a given probability of being independently deleted. The properties

of the coefficients in the expansion
P(G) =24¢ @G Moy Py Maucr-Pus

where A and V are the arc and vertex sets of G respectively, p,(p,) is the probability that an arc a
(vertex w) is not deleted, and G’ is the arc set A’ together with its incident vertices V", are
considered. The values of zu,(G) are characterized as follows: Z,,V(G ) is shown to be nonzero if and only if
G is coverable by paths and has no directed circuit. For this case 3,,,,( G') =(=1),*" = (= 1)"C, where
1,y is the maximal number of independent directed paths between u and the set v, and t,, is shown to be
equal to v(G)+ n, where v(G) =|E|—|V|+1 is the cyclomatic number of G.

INTRODUCTION

This paper generalizes the results in Ref. 1 on two root-
ed directed graphs to directed graphs with many roots. The
weights associated with such graphs and their properties
proved here are required in a forthcoming paper” on percola-
tion theory in a gas. The result d, (G) = (— 1)*?is also
used in developing a relation between graphical expansions
and renormalization for the percolation problem.’

Many of the proofs of the results given here follow those
given in Ref. 1 and so they are omitted. Only the differences
will be emphasized between the many-root and two-rooted
situations.

A completely different proof of Theorem 5 on the di-
rected—-undirected d weight relation is given® in contrast to
the inductive proof in Ref. 1.

Consider a graph G with input vertex » and output ver-
tices v=9{v,,...,u , } and suppose that a subset of the edges
and vertices is deleted. G is sometimes denoted by G , , if we
wish to emphasize the root points of G. Let S, , be the set of
all self-avoiding paths (following the arrows if G is directed)
from u to v, on G. ForseS' , , define the indicator random
variable

I, if s is open,
rs)=
0, if s isclosed,
in a given state of multilation of G. Now

12— N CS) R | 70!

$CS CS,, =y

2.1)

is one or zero according as there is at least one open path or
no open path from u to v,. The pair-connectedness is there-
fore given between u and v, by

Poo=rp= 3 (=D"TIre».
dCS, CS,., seS,
Nowletg (S;), V(S), E (5), A (S,) be the graph, the vertex
set, the edge set, and the arc set obtained by taking the union
of the paths in S;. Thus if p,, is the probability that element &
is not deleted, then
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<H7/(S)>= H P H Pes

s€S, veV(S)) ecE(S )

since this is the probability that all the paths in S, are open.
The result may be expressed as a sum over subgraphs of G by
grouping together all S, for which E (S)=E", and g(S)=G";
thus

Poo=Y d,.G) [[r.]]r.
E CE veV’ ecE’

where the *“d weight” is given by

du,u‘(Gl): Z
6CS, CS,,
g(S)=G

(_1)\S,|+1.

For the directed case read 4 for E and d for d.
The extension to many outputs is now straightforward.

P, ,=probability that there is a path from u to all of the
output vertices

=<H71>= z du,v(gl) Hpu Hpe (22)
i=1 E' CE vel’ eck’
where
d,.(G)= II S (=pf (2.3)
i=lgcs,CS,,
g("k’)IS,):G’

If there does not exist S= U §; such that g(§)=G,
N i=1
thend , (G")=0 from (2.3).
To establish a contraction—deletion rule for d -

weightsletp ,=1,p,=11in(2.2). Then

7ulG)= 3 d,4G),

A'C4a

(2.4)

where the connectedness indicator 77“ o(G) is 1 if there are
paths from u to each v, of G, , and zero otherwise.

Since the set of all subsets of the arc set 4 form a lattice,
(2.4) may be inverted? to give
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d,(6)=3 (=" 1y ,(6) . @.5)

A Ca
Now consider a particular arc ae4 and divide the sum
according as ae4’ and a€4’. We get

d,, S (=D"7 G+ T (=D 7, (G).
A CA A CA
acA’ aféA’

(2.6)

Let G"be the graph G contracted along the arc g; that is,

G"is the graph G\ {a } with the adjacent vertices of a identi-

fied. Also we define G° to be the graph G with arc a deleted.

If G’ is asubgraph of G, we define G to be the graph with the

arc and vertex set of G’ with arc a contracted, and G® tobe G’
less the arc a.

Thus if we ensure the arca is oriented out of # it is clear
that 7, (G") =7, (G”) when aed’. This true even if the
arc a has a root v, as an adjacent vertex if we assume that
when u =v,, then u and v, are connected. Furthermore in the
second summation G' does not contain the arc @ and so

7, {G)= 17, (G®) since G'=G?.

It follows that
d,(6)=d,(G"—d (G 27

subject to a being oriented out of u.

ue v

Remark: When u=v; on contraction, JuU(GV) =Ju,,,
(G"), where v'=v\ {v;} if we define y,,(G")=1.

2, STATEMENT OF RESULTS

As stated above the d weight of a graph which is not
coverable is zero. The fo}lowmg theorems apply to the d
weight of a coverable multirooted graph G.

Theorem 1: The directed d weight is 4-1 or 0.

Theorem 2: The directed d weight is zero if an only if G
has a circuit.

Definition: A collection € ={mi=1,...,n } of (direct-
ed) paths on a coverable directed graph G,y is said to be
independent if the matrix M= [m,] has maximal row rank

!
where 7,= zm .a;, %, and a,j=1,...,l is the collection

gty
=1
of arcs in G «v» and m €Q. Such a collection €' is said to be
maximal if every path not in ¢ is dependent on the elements
of €. Obviously the number of paths in such a class is an
invariant of G , .. We will call such a set a maximal indepen-

dent set (MIS) for G , ..
Theorem 3: If the directed graph has no circuit, then
d,(6)=(~1
.is the order of a MIS for G,

Theorem 4: FOT a dITecled grapi G With 10 CIrcuit
t ,o=w(G)+n, where v(G )=|E|—|V+1 is the cyclomatic
number for G.

Notegw(G)=(—

)t“,+n

where 7,

1) ") follows from Theorems 3 and

Theorem 5: The undirected d weight of G is equal to the
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sum of the directed d weights of G over all possible orienta-
tions of G.

3. Remarks and proofs of results

The basic graph which is the terminal stage of the re-
duction process using the contraction—deletion rule which
was described in Sec. 1 is the multiroot parallel graph: Every
arcis adjacent to the input root point  and one of the output
root points of v.

Proof of Theorem 1: First of all is it assumed that v, the
set of output root points, contains sinks and at each stage in
the reduction process the arc [u,w] is chosen so that wis not a
sink. The thegrem then follows since the reduction process
ensures thatdw(G) 0 or IdUU(G)| = |d,,,,(G) |
where G is a parallel graph with input x and output
U= {v;s--40; } , the set of sinks in v. Therefore,

ld ,(G) ==+1 or0.

For the purposes of calculation the assumption that
v, 40 is no real restriction because d (G)=d , (G,)
where G, is the union of G with a single arc b attached to a
root point v, where v;is replaced by v, as the root point, and b
is oriented from v; to v,..

It can be further seen that if G does not have any root
points which are sinks then there is a directed circuit in G
and so the first part of Theorem 2 applies which will result in
d, (G)=0.

Proof of Theorem 2: This proof follows the correspond-
ing Theorem 3 in Ref. 1. The only essential difference is that
if [u,w], the arc upon which the contraction—deletion rule is
applied, is such that w is a root, then

{m . 1l Bulm om 1
is a covering for G°.

Proof of Theorem 3: As in the proof of the first part of
Theorem 2 (), we can apply the contraction—deletion to an
arc a of G with vertices ¥ and w and contain two cases:

(I)J”(GT)-——Ju {G), G7 has no circuit,
d , (G*)=-d, (G),G® has no circuit,

where G” and G? are both coverable. When w is not a root
point it is easily shown, as in Theorem 4,' that number of
independent paths in G and G” are equal and differs from the
number independent paths in G° by one.

If wis a root point say v,, then there is a natural one—one
correspondence between paths on G7 and the set of paths on
G not including the root path 7 consisting of the (contracted)
arc a between v and v,.

A maximal independent set of contracted paths ¥ on
G7 gives rise to an independent set €' on G using the 1-1
correspondence.

We claim that ¢ = € 'u{7} is a maximal independent
set for paths on G. The set ¢ is independent because if
7=3"_a,, 7 ,€¢ @ ,Q, then on the contracted graph
G?, 7' =3"_a,m!;but 77=0, the 7} are independent, and
not all the a;'s are zero since 770, so we have a
contradiction.
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To show that ¥ is maximal on G suppose there exists a
path mo(5£7) such that €' u{r,} is independent. However the
contracted path 7} must be a linear sum of the MIS for G7,
that is

n
mh= Y aml, m7eC?, agQ, ;0 for some i.
i=1
For the cases aem,, a¢m, the coefficients c; at the vertex
w sum to 1 and O, respectively, therefore

M= Za /T, and so we have a contradiction.
i=1
Thus when wis a root point the number of independent paths
in G and GY differ by one.

The other cases follow as in Theorem 4.!

Repeated application of the contraction—deletion pro-
cess results in a parallel graph H of the following type:

Note there will in general be only & of the original # roots,

say v’ ={v,,...,; }, the set of sinks which is nonempty by the
t, +k

no-circuit property. Moreover d,(H)=41=(—1)""
where 7, (=k) is the number of independent paths in H

Furthermore in the reduction process from G to H the
number of independent paths has changed by one: (a) for
every reduction by deletion, (b) for every reduction by con-
traction of a root point,

Therefore, the total change in the number of indepen-
dent paths ¢,,—1,, =(n—k )+ # of deletions

and hence the number of sign changes in the d weight for the
sequence of graphs from G to H is

t r_tul:k_(n'.k)’

ut

since n — k is the number of roots contracted.

Therefore,
c;,’ (G):(— l)'“"‘+k+t“" —t,,—(n—k)
=(=1)"*",

where ¢, is the number of independent paths in G.
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Proof of Theorem 4: Let I[T={r]i=1,...,l } be a MIS for
G. The generalization required here is that G, be a subgraph
of G consisting of a subset {7;ji=1,...,n } of IT covering all
the root points. We can always take G, to be a tree.

The order of a MIS for G, is n =|v|. Moreover it is easy to
check that d «o(G)=+1. Let p,,...,p, be paths in /T which
are not in G,.

Define a sequence of subgraphs G,= Gou{uj’f= w0 ; }. For
the sequence G, define p(G)=|E|—|V|+1+#n. We note
u(Go)=n which is the number of paths in a MIS for G,.

The argument now closely follows Theorem 5' and we
obtain u(G)=u(G,)=t,, Now u(G)=v(G)+n, where
v(G) is the cyclomatic number.® Therefore,

d(G)=(=1)"""=(~

Proof of Theorem S: Let G be an undirected graph and
Z(G) be the set of graphs obtained by directing G in all
possible ways. Now consider the paths on G as directed from
u to v;. Any subset of S; which covers G either covers some
g€ (G ) or g(S)) has at least one loop of length 2. Let ¥ (G )
be the set of graphs obtained from g by directing it in all
possible ways and replacing at least one edge by a loop of
length 2. Thus

I)V(G)+n+n=(_ l)v(G)_

duvl(G): 2 (—1)1SJ+1
2e7(G) $CS,CS,.
&S)=g
S S (cpp @.1)
ge_/(G)d;CSCS
g(5)=¢
But for ge.#(G),
S (C1fit=o 4.2)
$CSCS,.
#S)=F

sinceitis thed weight of a directed graph with a loop and the
result follows by substituting (4.1) with condition (4.2) in
2.3).

'D. K. Arrowsmith and J. W. Essam, “Percolation theory on directed
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Math. Gen. 10, 1917-26 (1977).

"J. W. Essam and C. M. Place, “Low Density Expansion of the Pair Con-
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D. K. Arrowsmith 103



Predictive relativistic mechanics
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We integrate the partial differential equations on the accelerations in predictive relativistic mechanics by
means of integro-functional equations. We investigate some problems concerning the Hamiltonian
formulation of this mechanics: Poisson brackets of position variables of each particle, Hamilton-Jacobi
equations, and Hamiltonian formulation of the separation of the external and internal motions.

INTRODUCTION

Contrary to the mechanics of particles interacting
through propagating fields, a description involving an infi-
nite number of degrees of freedom, PRM (predictive relativ-
istic mechanics) restricts itself to systems of second-order
differential equations; this means that initial positions and
velocities suffice to predict the motion, hence the predictive
qualificative to this mechanics. This is completed by the re-
quirement of invariance under the Poincaré group; this
means that, given a set of integral curves of the system in a
Lorentz frame, the equation of these curves has the same
form in any other Lorentz frame; or, in other words, the
corresponding accelerations are the same functions of posi-
tions and velocities in any Lorentz frame.

Finite predictivity and relativistic invariance imply
very restrictive nonlinear conditions on the accelerations; in
Sec. 1A we give them for a formalism in which the predic-
tiveness is manifest, the given conditions then guaranteeing
the invariance, and in Sec. 1B for a formalism in which the
invariance is made manifest at the start by the use of 4-vec-
tors, the conditions then guaranteeing the predictiveness.

Predictivity and invariance are two general require-
ments, and an ingredient is necessary to characterize a spe-
cific interaction. We thus call upon field theories and use
relations such as the Liénard—Wiechert formulae for electro-
magnetism as boundary conditions to integrate the equa-
tions given in Sec. 1B. This leads to coupled integrofunc-
tional equations which can be solved step by step by
developing accelerations in power series of a parameter such
as a coupling constant. An approximation then character-
izes the first term of the series, subsequent terms bringing in
successive corrections to this first approximation. The ex-
plicit method of Sec. 2A uses the uniform motion approxi-
mation and yields accelerations explicitly in terms of posi-
tions and velocities. The semi-implicit method of Sec. 2B
uses the relativistic uniformly accelerated motion, and yields
accelerations in terms of positions, velocities, and accelera-
tions themselves, thus implying a final inversion to get the
accelerations in explicit form. This last approximation being
closer to real motion, this method yields better results as
illustrated on two particular examples.

Section 3A recalls the Hamiltonian formulation of such
a mechanics, in which all symmetry transformations—pre-
dictivity and special relativity—are canonically represented.
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It is well known that in such a frame particle positions
cannot be canonical variables. However, we show in Sec. 3B
that Poisson brackets of position variables of each particle
(not between different ones) vanish up to first order in the
coupling constant as a direct consequence of the existence in
field theories of one variational principle per particle, respec-
tively admitting the position variables of each particle as
private Lagrangian coordinates.

The Hamiltonian formulation of Sec. 3A naturally ex-
hibits one Hamiltonian per particle. In Sec. 3C we construct
first the corresponding Lagrangians, and then one common
variational principle with a variation procedure of its own.
The concept of canonical transformation leads to the theory
of Hamilton-Jacobi (HJ) whose principal feature is the exis-
tence of as many equations on the same generating function
as particles; these HJ equations offer an interesting prelude
to quantum mechanics.

At last, in Sec. 3D, we define the Hamiltonian formula-
tion of the separation of external and internal motions. This
begins by the introduction of the external variables: the total
linear momentum of the system, and a conjugate, the center
of spin, generalizing at the relativistic level the characteristic
properties of the Newtonian center of mass. Then we find the
equations to integrate to obtain the internal canonical
variables.

1. EQUATIONS ON THE ACCELERATIONS IN
PREDICTIVE RELATIVISTIC MECHANICS

A. Manifestly predictive formalism

PRM contemplates a fixed number of n point particles
whose evolution is governed by a system of second-order
differential equations’

dx’ . dv}, A
dta:U"’ d—tza;(xfb,vc;t) (1.1
which is invariant under the ten-parameter Poincaré group.
Let us define precisely this invariance’: Let

) . j oK
X =@.(x v ;) (1.2a)
0h Oc
with
xi=@!(x%,0%0) (1.2b)
0 0 0
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be the equations of # integral curves of (1.1) and consider the
following n parametrized curves in Minkowski space M.:

(1.3)

Invariance under the Poincaré group means, using the
active point of view, that for any transformati_or_l of this
group whose ten parameters are denoted by A 11=12,..,10,
there exists functions f { and g/

ik
i . 0 __
x! =@ (x v ;t), x,=t.
0b Oc¢

(1.4)

X=fi(xuhAh), vi=gl(xjv5AT)
0 0 0 0 0 0

such that the equations of the transformed curves use the
same @,

. . f ‘\
X" =cpj,(x’j P, xO=t. (1.5)
0b Oc
This requires
%ai (1.6a)
-0, .6a
ot
%, o (1.6b)
€ =0, )
* ax,
. d . d ; :
! k k i i k
€ kj(xaa+vaavi)ab_6 K9 b (1.6¢)
d
[(xuj—xbj)viax—/—%(vf,vaj
I I a i
_606j+(xaj_xbj)au)—[' a,
dv,,
=20 a),+V,a,, (1.6d)

where €,=1, 5} is the Kronecker symbol, and € ; is the
Levi-Civitta symbol.

These conditions were given for the first time indepen-
dently by Currie’ and Hill* as necessary conditions, and Bel?
proved their sufficiency.

Consider the following ten vector fields:

H=—v] a —aLL_,

ox ! av'
Pz_faai_;, (1.7)
Jk:e""’(xﬁaj;“{’ai;)’
Kj=—xajv;—ai—z+(6a5j—v;vaj—xaja; a‘Z;.

Conditions (1.6b, c, d) are equivalent to requiring that the
preceding generators satisfy the usual commutation rules
characteristic of the Poincaré Lie algebra

(P, H]=0, [J,H]=0, [K,H]=P,
[P,P;1=0, [J,P;]=€,*P,, (1.8)
[K,P,1=6,H, [J,J,]1=€,5J,,
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(K.J,1=€,*K,, [K K;]=—€*d,

They are then called the generators of the realization of the
Poincaré group induced on the phase space of the system
(positions and velocities).

In this formalism, predictivity is manifest in Eq. (1.1),
since initial positions and velocities suffice to predict the mo-
tion. Invariance under the Poincaré group is guaranteed by
Eqgs. (1.6).

B. Manifestly invariant formalism

Consider the following system of second-order differen-
tial equations on M,:

dx§ dr?
L =r2, L=0%(xBm?
dA dA b7e)
and require that the family of its integral curves be the same
as that of (1.1). There is no unique way to do this. One way’®
adopts the 7 § 7 ,,, as first integrals, thus offering the possi-
bility of identifying them with minus the square of the
masses m,. This implies the following conditions®:

(1.9)

78 ,, =0, (1.10a)
% 0 (1.10b)
€,——=0U, .
b&xf
] K]
(58, —8” U)(x”———HT" )9;;
/{77/ 3 Ma bax'le 17877.27
=596,,—8%0,, (1.10¢)
(wa“iw""i)a{i:o. (1.10d)
ox & o

These conditions are equivalent to saying that the following

10+ # field vectors:
P)‘ =€b—8—,

ox}
Ji,u =(5§”;1¢7_5ZU10)

(1.11)

d

H :77‘_04 d _+_911/1 ,
ar’

called the generators of the complete symmetry group, satisfy
in addition to commutation rules characteristic of the
Poincaré Lie algebra (trivially)

[P/{’Py ] :0’
["I,uv’leo] zny/l‘.]va +77 va‘ju/i

_7],110‘.] vi T \fAJya’ (112)

[PX’Jut*]zni1'Py “77,1/;P o
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the following ones:
{H,P,1=0, [HmJM] =0,
[HpH,] =0, ZH)mm,, =
One important consequence® of (1.10d) is that if

(1.13)

=P Jgﬁ,frm ), =P 0E arA), (1.14a)
4] 0O 0

with

a

"(x 7r O) 77' —y (x ,7r O) (1.14b)

0 a

is the general mtegral of (1.9), then any element of it

e

*(b"(x 77'/1) 7T = (x,7r/1)

Oa Oc Oa Oc Oa

(1.15)

is a possible set of initial conditions for the same curves;
moreover

xq=P o IA—1),
0 0 0

=W A4 ) (1.16)

Invariance of (1.9) under the Poincaré group is manifest
in this formalism through (1.10b,c) which integrate immedi-
ately, and which say that the 8, should be space-time trans-
lation and rotation invariant 4-vectorial functions of x® — x”.
and 7}. Finite predictivity is seen through (1.10d).

Both the manifestly predictive and manifestly invariant
formalisms are locally equivalent, and connection is
biunivocally given by

al (%, v8y=m, *(1 — 028} —vi, )6, (1.17)

Vg aj
where, in 67, we set

=m vl’(l_UZ)‘l/z
=myty b s

23172 3y 2 =gyt
b(l_vh) WU p ==V Uy,

o __ i
X, =1 T,

(1.18)

Th=m

Thisshows that 7§ ism ,u{;, where u §; is the usual 4-veloc-
ity, and that A can be 1nterpreted asm 't , where 7, is the
usual proper time elapsed from the initial configuration to

the present one.

The following system

dx ey, du? —AT(xBuT),
dr “dr

where A“=m ;20“(x%,m7V =m ,u?) has the same inte-
gral curves as (1.9). The predictivity conditions then read

(1.19)

(v w0 pgen Ji=o (1.20)
ox & u s
Note at last that (1.9) can also be stated as
dx «a d,n_rx
——=8gmy, =850 (xF ) (1.21)
dA, di,
the general integral being
B ¥ B v
x¢=@Nx 7 A,), Ti=¥i(x ;7 A,). (122)
0b Oc 0b Oc
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The manifestly predictive formalism is more funda-
mental, while the manifestly invariant one is more conve-
nient for calculations.

2. INTEGRATION OF THE EQUATIONS OF THE
MANIFESTLY INVARIANT FORMALISM

A. Integration in explicit form?
Assume equations of motion of the form

dm ¢

dA

a

} ret & ret S ret
/ T (}l/ Ty ’9 2’ )

772“«(16* "(xﬂ

+(1##a“’)9*z(x{13__x([jadv77_“,77,15 adv Hg adv)

(2.1)

coming from field theories such as long range® scalar or vector
interaction. They . are arbitrary constant numbers (that are
equal to 1 in the purely retarded case, and to 4 in the time-
symmetric case). These formulas are used as boundary con-
ditions for integrating (1.10d) by means of integrofunctional
equations as follows:

00 =3 1o 05@;D)+(1—p ) 05 (@s5—1), (2.2a)
9 Z(a’;e) :R a'[ﬂ’ aa’(e) ]6* :11( X 5 —X {13"7731/’77 3,6 5’)
A, (€) (9
[ e r@ertoo@o. e
0 877_ a 7]

where R, acting on any function f'is defined by

R, AYalm)=f&f+85amlml). (2.3)
In the first term of (2.2b), R, acts also on the arguments of
0%;€is + 1 (resp.— 1) when in (2.1) @' is in retarded (resp.

advanced) position with respect to a; the A ,(€) are solu-
tions of the isotropic conditions
R (A)x8,x 0,=0, (2.4)

—x . Thus

:(WZWGII)_]{TT(ZXIMJV(I +6

24
where x aa _x a

A aa'(f)

X[(W:llxau'a)z_(xa aarz)(ﬂ'aﬁaa)l/z}

2.5)

Equation (2.2b) can be solved by expanding accelera-
tions in powers of appropriate parameters. For example, if
6* “(x8,.,m¥,m5,0%) contains the charge product e ,e - in
factor, and is expandable in power series of & 2, we will
postulate
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o:=73 o2,

n=1

(2.6)

where 0 ¢ has a product of 2» charges in factor. For n>>2 the

computation of 8 requires only the knowledge of 7,

I<m<n—1:
03:2/“00’9 g(a,;l)"*’(l _.uaa‘)e g(a’;_ l), (273)
n—1 A, (€)
05@0)=05+ Y dAR_ L) 6 ©
" n m=1J0 n—m
X a’ 6 3(a";e), (2.7b)
AP m

where O ¢ is the term of order # in the expansion of

R, [A.A€)]0 *¢(xE,,w1,75,6%). To first order, (2.7a) holds
with simply

04(@;€)=R. [ Ao, (€)]0 *5(x00,7073,0). 2.8
1

Interpretation of 8 §(a’;€) is obvious: it is the retarded (:e = 1)
1

or advanced (:e= — 1) part of the acceleration of @ due to ¢’
as if, for each configuration (x%,77), a’ were in uniform mo-
tion. It happens that, for scalar and vector interaction,

@ 5(a’;e) is independent of €. The subsequent 85, n>2, bring
1 n
successive corrections to this first approxiation.

In this method, the uniform motion thus constitutes the
basic approximation for integrating the predicitivity condi-
tions, and we obtain the accelerations explicitly in terms of
the x’s and #'s. This form is appropriate for the Hamiltonian
formulation of Sec. 3.

B. INTEGRATION IN SEMI-IMPLICIT FORM

In this method we look for accelerations as functions of
positions, velocities, and accelerations themselves

dug ag B &
dr =WaxpulAg). 2.9

a

Of course, this does not mean that accelerations are part of
the initial conditions. It does correspond to a second-order
mechanics, only implying that one should invert

A=W cfutAL) (2.10)

to obtain the accelerations in explicit form, namely as func-
tions of positions and velocities.

Equations of type (2.9) could be suggested by the very
presence of the accelerations as arguments in the Liénard—
Wiechert type formulas

duf§
= 2 HawA O X A L)
2
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+ (1 '_:u’aa’)

X A *¥3(xB — xB2W ¥ y829v 4 £ 20V 2.11)

A possible theoretical advantage is that it might not al-
waysbepossibletoobtainexplicitaccelerationsinclosed form.
A very peculiar example, that of the one-dimensional asym-
metricelectromagneticinteraction, shownexactlysolvableby
Hill and Rudd,’ supports this conjecture: we do know the
equations of the integral curves of the system under the form:
t,=f, (x,;firstintegrals); we thus have all we need to ob-
tain the accelerations in explicit form by differentiating twice
and eliminating the first integrals; however, the presence of
transcendental functions in f, prevents us from achieving this
idea.

The true motivation is that we can expand the W in
power series, and that these semi-implicit series contain
more information, at equal number of terms, than the explic-
it series, as illustrated by two examples. The semi-implicit
form comes to nothing more than regrouping differently the
terms of the explicit series.

The predictivity conditions to be integrated will now
read

(u“'“ d A a/aL+A' u'ni__>W§:o, (2.12)
ox¢. ax & o4
where 4 % is d4 ¢./dr .., and is obtained by inversion of
(u a'a d +A aa d +A “/('—H—)WQ,ZIA. {1] (213)
ax < du a4y

The corresponding basic approximation is now the relativis-
tic uniformly accelerated motion

dA S
do

Integration of this equation serves as a definition of the oper-
ator S, replacing R, of the preceding section. Let
(x%,u?,4%) be an “initial” configuration. Let particle a'
evolve according to (2.14), and freeze all other particles. Let
o be the proper time measured along the trajectory of @’,
elapsed from the initial configuration. Then .S, is the identity
oan,uf,A Y, and

S A0)x g =x5(0), S () ug=ug0),

S (@) A5=4%0).

=A2us (A2=A454,,). (2.14)

(2.15)

S (o) 4 7 is of course not to be confused with S (o) W2.
Note that

aa'S a’(U)EiS a'(U) ’
do

(2.16)

d=u" 9 a9y aue J
Ix u 94 %
Let 0,,(€) position the point of the trajectory of &’
which is in retarded (e=1) or advanced (¢= — 1) position

with respect to a:
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Su' [U uu'(E) ]X Za'x ad'a =0. (2 17)
Important properties are
d o, (6)=—1,

aa

u' [U uu'(e) ] o uu'(e) = 0,

S (0)S ()=S,[0.48 {0)0:]. (2.18)
Write (2.12) as follows:
I W =—(Al—a2uh) e (2.19)

gar

and, since computations must eventually end up by the in-
version of 4 = W, integrate rather this equation

A Wi=—(45—Ww2 ff) (2.20)
as follows:
W= tWHa D+ —p, WHa';— 1),
(2.21a)
WZ(a’;e):S [ aa (6)]"4 *a(xfj’ ’u;/’ug"A Z')
a,,., (€) K
[ dos, o - wu
0
X y ZWiae). (2.21b)

Asintheexplicitformalism, Eq. (2.21)canbe solved step
by step in powers of g, =e_,e,: that is why, on going from
(2.19) to (2.20), we replaced 4 2. which, before inversion,
does not contain the g’s, by W 2 which does. We thus
postulate

W= 2 W 2.22)

A nice thing about the semi-implicit formalism is that 4 *¢
contributes only to Wﬁ,’, though in the explicit formalism,

6 *¢ contributed to al] terms of the series since its argument
6% also had to be expanded in power series. For electromag-

netism, we remark that Ifr;’(a’;l): Iff/;’(a’; —1).

Let us proceed to show that this method provides the
same accelerations as the explicit formalism. First invert
Ac=WxPul, A5 to get A “(xf,ul), and define
Aa€)xbu )as being equal to W §(a’ ) [xhul A 5(x6u5)]

We want to show that 4 a'e)=A45(a’e) [4 $(a';e) is ob-
tained from 6 {(a’;€) of Eq. (2.2) according to the rule
(1.19)]. Then evaluate (2.21) for 4 “=A4 ¢, and set a’ in re-
tarded (€=1) or advanced (¢ = — 1) position with respect to
a which makes o,,(€)=0 and yields

A @)Ul =A *G [ Xy ulubA o (xul)]

s =€(x) X ,0)7). (2.23)

(for x°
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Next set A% =A% in (2.13), and compare with the re-
sult of applying u ¢ ﬁ(a/ax ﬁ)+A “B(3/3u”) on
A"—W"(x,,,u A5) to get

[x,,,u(.,A (x(,u’-’)]

:(ua';ax 9 )Aﬁ(x o).

Then evaluate

[t AT (=W i 2]
. A"

a' a’

(2.24)

X Wia',€)=0

[of which (2.21b) is the integration] for 4 7
with the help of (2.24)

(2.25)
=A% Thisyields

d  ~.p 8 v 0 way I \]7a
uu/} +Aa/3 +[(ua7__+Au)’_)]Aaﬁ
{ Ix!} aul; Ix; Oug
5 af B, 406
S| X W e A =0 (226)
or
5 3 g 3\
P AP )"Zﬂ';e (x}u)=0. 2.2
( aag, T g [ 2

Then postulate an expansion in powers of the coupling

constant for 4 “(A “ EA o) and proceed by recurrence by

supposing that A4 “(a’ ,E)—A “(a';€) has been proved up to
order # (this is obviously true for n =1); thus, by linear com-
bination, E;’ =A j is true up to the same order. Then the
(n+ 1)st order term of (2.23) and (2.27) tells us that

A %(a’;e) and A4 f(a';e) are equal since they satisfy the
nel n+1

same equation with the same boundary condition. They are
thus equal to all order

A(a€)=W Xa'e)xhul,Ad })=A4a"e) (2.28)
and, by linear combination
A=Wibul A=A (2.29)

First application: when two charges of opposite sign
(g=e,¢, <0) and equal masses m interacting according to
Wheeler and Feynman electrodynamics describe the same
circle, the radius of this circle is given in terms of the com-
mon velocity v=/c by":

PB)=1—B%+ 58%.. (2.30)

r=—

4mu

Using A * for the acceleration A4 ¢ allows to find correctly

only the first term of P () which thus could have been more
simply obtained through nonrelativistic mechanics. The first
relativistic correction [second term of P ()] requires the

computation of A o +A in the explicit formalism, though of

only W ¢ in the semi-implicit formalism.
1
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Second application: The one-dimensional and equal
masses static case (acceleration for the special configuration
v, =v,=0) shows that with terms only upto g* (W3+ W3)
we correctly obtain the acceleration up to order 5:3 i !

ay=a,=gm 'x*+gm x>+ 3g'm7x. (2.31)

3. SEVERAL QUESTIONS IN HAMILTONIAN
FORMULATION

A. Review of Hamiltonian formulation of RPM in
manifestly invariant formalism (Ref. 11)

To give a Hamiltonian formulation of a Poincaré invar-
iant predictive system is to find a symplectic form £2, namely
a 2-form defined on the phase space of the system, regular
(det£2-£0), closed (df2=0), and invariant by the 104 vec-
tor fields A=P,, J,, H

Z(A)2=0, (3.1
where &£ ( )isthe Lie derivative. We know that to each such

A leaving £2 invariant, we can associate a function A =F (A)
defined on the phase space, up to an additive constant, by

(A)2=—dA, 3.2
where i ( ) denotes the inner product. We then can prove
‘g(Ai)Ajz[A i’Aj]’
3.3)
dF([AI-,Aj ])=d [A ,',Aj ]’
where [A ;,A ;] is the Poisson bracket of A;and A, according
to 2 and [A ;,A ;] the Lie bracket of A; and A, Let
P, J4,, H, bethe functions associated to
P,, J,., H,. (Onecan prove that all additive constants
can be fixed). From (3.3), P, is a 4-vector, J 4 @ 4-tensor,

and H , scalars, and their Poisson brackets are homomorphic
to their Lie brackets. Note in particular

[H,,H_,}=0. (34
For free particles, we have 2 =dx $ Adrm 2 and we ob-
0

tain for A :
0

J— y — a a
1;,1 —z T aas ‘g/l,u =X q Ty X T s
a

— 1
}010—_57

T aa- (3.5
Requiring:
lim IR (A)2=0n
A-r- % a 0
entails:
lim /TR ,(A)A=A
A-rmoc a 0
which helps identifying P, and J 20 TESPECtively, with the

energy-momentum 4-vector, and the generalized angular
momentum 4-tensor of the system, when interaction is pre-
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sent. It can be proved that H, = — 1#%7__, or, numerically
speaking: H, = im2.

The zero-interaction'? theorem indicates that in a
Hamiltonian formulation invariant by the complete symme-
try group, particle positions x J cannot be canonical varia-
bles, except for the case of free particles.’

A particular set of canonical coordinates up to first or-
der in the charge product g, is provided by

Fa) ~ A
a a «a a a a
Poa=T, pla’ qa_'xa q]a’

- (2=dg3 Ndp2), (3.62)
pi=[ araes,
A 1
o= _Lf “diR (A 5 (3.6b)
giving
P4=;5w Jau =0 aiP =80 s (3.60)

One can make a canonical transformation from this set to
another set: (g5 ,p5)—(q2,p3); then

P/I=zpaﬂ’ jA;L =quPZ‘qayPir (3'7)

ar;d H,is —imlm
gy andpl.

«a» Where 77 is reexpressed in terms of

B. Poisson bracket of position variables of each
particle

From the zero-interaction theorem we cannot have al-
together when interaction is present

[x5.x7]1=0. (3.8)
However we can ask if we can have the less restrictive
conditions

[x & x%]=0. 3.9)

uptofirst ordering, .. Inverting (3.6a) up to that order, (3.9)
means

[é:—é:,c}f—éf]zo (3.10)
1 1
or
—qa 7 —__qa 7..=0 (3.11)
aﬂ,aﬁ laa P laﬁ :

which guarantees that functions 3, (x Z,7 ) exist such that
1

Za=f 24T g (3.12)
1 1
Let us introduce L , by (with D,=#% d/9x°)
- .
L,=D,>,
1 1
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8 R

axﬂ(l

J-d’ﬂ'gﬁf dAR (A )f dA'R (A)65. (3.13)
0 o 1
It is then easy to see that
g;:[ J _(Wg_"_) d ]L (.14)
! ox;, axB/ ars |

but these equations are precisely the Euler equations at the
order considered of the following private variational
principles:

6,|L,dA,=0 L, =irm, +L (3.15)
where 6, means that only x § (and 7 ) are varied, x ., 7 5,
being kept fixed.

In other words, the nullity of Poisson brackets of posi-
tion variables of each particle up to first order implies the
existence of private Lagrangians up to first order admitting
particle position x as private Lagrangian variables.

Conversely, n such private Lagrangians L, being giv-

en—satisfying (723/37°*)L ,= L ,and DL , =0 to guar-
1 1 1

antee, respectively, 7¢6,, = 0and D, ,9 ¢ = 0—one can car-

ry out n private canonical transformat1ons from

X%, DPao = 0L /37" to new variables 4, pa which will be,
up to first order, canomcal variables for the common sym-
plectlc form .Q dqa A dpa since they are buiit to satisfy
£(H,)q% = 5,75 £(H,)pt =0, implying £(H,)2 = O:

xSoqt=xi 43,
amré 1
~ d
P oaP aa =P aa — aaz“’
dx 1

where 3, is defined by
1

z,,:-fﬁ dAR AL, (3.16)
1 (o) 1

We thus have notonly [x ¢,x? ]=0butalso [x % ,p? =6
and [p ¢,p ] =0, these Poisson brackets being computed up
to first order according to the common symplectic form.

The interest of this question is that one meets the above
properties for scalar and vector interaction, of short or long
range, because we do have in the corresponding field theories
one variational principle per particle, admitting particle po-
sition as private Lagrangian variables, and providing La-
grangians L , through the uniform motion approximation
for particles not varied. Let us illustrate this on electromag-
netism, for which field theory gives
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6. [sr5m et

( e 7Tret
aal(xﬁ—ngre‘) ret|

a
e, ﬂ,adv

di , =0 3.17

l—p
+( #aa)*(xg

and for which we get

a
€aC Tyl ga

L,=4rim,+3 .
2 2
a' [—)C aa’™ a'+(xga'7r a'/3)2]l/2

(3.18)

C. Lagrangians, canonical transformations, and
Hamilton-Jacobi equations

These three simple notions are reconsidered in the
frame of the Hamiltonian formulation of PRM where we
have one Hamiltonian per particle. We start by introducing
one Lagrangian per particle, but these are not to be confused
with the ones of the preceding subsection.

The canonical equations of motion, coming from the
invariance of £2 by the H,

dq, OH,

dA, oph

dp __9H, (3.192)
dA, gt

are compatible in virtue of [H ,,H , ] =0, and their solution

gives g ¢ and p % as functions of the initial conditions ¢} and
4]

p 5 and of the n parameters A ,; the solution is thus a n-hyper-
0
surface tangent to the » field vectors H,.

For each value of the index a invert (3.19a) to get p# in
terms of g7 and dg5/dA . The expressions pi»3(q?, dq5/dA,)
obtained for different g, are not the same, but they of course
become equal functions of the A’s when the g7 are replaced
by their expressions in terms of the initial conditions and the
A’s.

dq?(/lf)] Wl ), ‘3(&/)].

3.20
dA, dA (3.20)

pg)a)BI:qz‘/(/{d),

a

Then construct the Lagrangians L, Legendre transformed
of each Hamiltonian

dq? dq’
L (45 f)= @0 296 g (g8 px 321
a(qbd/la Pg i (g5.p). (32D
The L, satisfy
JaL
3La:_c9Ha, & _pn (3.22a,b)
8 B B B
g g, a(d4b>
dA ,
and (3.19b) implies
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d L, oL,

dA, a(dqu) o
dA,
The proposed extremum action principle has the form
84 =0 with

A
A= f LdA®.
(4.)

A depends on the functions ¢3(4,) chosen to evaluate it, but,
presenting itself as a curvilinear integral in the space

(A1, As...,4,), it depends also a priori on the chosen integra-
tion path A,(1 ) parametrized by one parameter A varying
from an initial value A, to a final value 4 we set

A=A LA DA =2 (A/). The action variation 64 due to vari-
ations 8¢5(4,) and 64,(4 ) is

(3.23)

(3.24)

d oL,
54=Y |dA 2| — 8q2|+L 64
;f adllali dqg qb:l V
dl
di,
aL d aL ,
+ fd,iaaqﬁ ‘¢ _
2’ "|ag% di, a(dqf)
dA,
f&l dA (dL"' dL“) (3.25)
+E “TTN\dA, dA ) '

Nowsupposethatthevariationdq (A ,) occursaboutasolu-
tiong 5 (A ,) of (3.23), and that both types of variation van-
ish at the end points

(8g2)(4,)=(6g)(A)=0,
(3.26a)
(BA)A)=(8ANAp)=0, (3.26b)
then, in virtue of (3.22b) and (3.20), p&"* =p{'® =p} and the
first term of 4 integrates to p;¢7}{ and vanishes by virtue of
(3.26a). The second term vanishes by virtue of (3.26b), and

the third one is zero by (3.23). At last [H,H_]=0 gives,
using (3.22a), (3.19a), (3.20), and (3.22b)

o OH, 0H, OH, OH,

dgh dph g% I}
_ 9L, dgy OL, dqf
9% di, 9qP dA,

L, dg%  dL, dq?
:_(&]f di , a(dqf) d,i,,,d,la)
di
oL, dgf AL,  dq¢}
(aq/,f dfla+a(dq§) dflafd/la)
dA
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dL, dL,

i + i 3.27)
In other words, 54 is zero for a variation 8¢ § —vanishing at
the end points—of the solution ¢ & and for the variation of
any integration path A ,(4 ) with the same end points since,
finally, from (3.27) which is an integrability relation, 4 is

path independent.

The converse goes as follows: Some L (g% ,dg ! /dA )
being given, require that they define the same moments

AL aL
@ Tmd (3.28)

a(dq’;’) a(dqf)
di, di,

This constitutes a set of 4n (n— 1) relations among the
4n+-4n’ variables of the (¢ & ,dg % /dA ) space. Thus the en-
tire motion must lay on a (4n +4n?) —4n(n — 1) = 8n-dimen-
sional hypersurface. Then write §4 =0 with (3.26). The first
two terms of (3.25) vanishes as before. The fourth term

dgj oL, dqf L, d'q}
di, 9qf di, 9qf di,dA,
wf e ks \ g (3.29)
o) o)
i i,
must be restricted by p §% =p ’°, thus implying that the

Hamiltonians H,, Legendre transformed of the L, should
have vanishing Poisson brackets. Finally Euler equations
follow from the third term: it is easy to see that they respect
the constraints (3.28), and entail Eq. (3.19).

Now two points (g, 4,,) and (¢, 4,,) being giv-
enin the Sn-dimensional evolution space (¢ &, 4 ,), thereis
in general only one n-hypersurface ¢ S =f%(A ,) satisfying
(3.23) and passing through these two points. Let us use it to
evaluate the action which we know to be independent of the
integration path A (4 ). The variation undergone by
A& 9ap A s A 4e) when both end points are varied is

8A=ppbgf +L 84 (3.30)
whence, with obvious notations
J4 a 04 c
« :paf’ a/{ :‘Ha(q/[ff’p}:/) (331)
q af af
o4 04
== f‘li’ __—:Ha i% C/i . .
P P G (5.0 (3.31)

We thus have constructed a common solution to the # equa-
tions H ,(q%,04/ 3q7)+3A/ dA , =0; it actually is a com-
plete integral depending on 4n parameters q . The n param-
eters A, are irrelevant since, owing to the H, being first
integrals, A dependson 4 . and A ,; only through the differ-
ences A, —4 ;.

Now one can carry out a canonical transformation in
phase space as usual: S being a function of ¢ ¢, P%, A,
define new canonical variables through
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P":ag:;’ QZ:@P;‘,' (3.32)
The new Hamiltonian are then
K (Q%, P, /id)zflﬂ-f—j—fa— (3.33)
and are shown to satisfy
K, Ka.]+aK“ —aK"'zo. (3.34)
oA, dA,

Hamilton—Jacobi equations are obtained as usual by
asking that the new Hamiltonians K, be zero, a choice triv-
ially satisfying (3.34)

as
Ha(qg’ ;>+
dg?

95 .
EYD

(3.35)

This set of HJ equations constitutes a system of 7 first-order
compatible partial differential equations on one function S of
the 5n variables ¢ &, A ,. Thus a complete integral depends
on 5n—(n—1)=4n 41 arbitrary constants, one of which is
purely additive since S itself does not appear in the system

S =S Apa;)+a, =12, 4n. (3.36)
Writing 85 /3g% = p2, S /da; = b defines
g5 =feApaj, b7), po=giA,aub”) (3.37)

and these functions are easily shown to satisfy the systems of
characteristics of the system of HJ equations, namely the
canonical equations (3.19). Naturally, inversion of (3.37)
yields functions @; and b’ of ¢ %, %, A4 . satisfying:

la,a,]=0, [b"b71=0, [b'a;]=8,
(3.38)

da; : ab’
iH —=0, [b'H, =
[al a]+a/i [ ]+ a/{

a a4

O;

so that, as expected, S'is the generating function of a canoni-
cal transformation from g2, p€ towards aj, b7 that are first
integrals. Furthermore

ds_dd 95 05
dA, diA, 348 A,

w995

:pgg—li—Ha:La. (3.39)
Thus
S= JL,, dA ¢ + constant, (3.40)

where £ is pf (A a;,b”) and where, after integration, the 5’
are expressed in terms of g5, 4,, a;.

Since the H , are numerically equal to 1m 2, a separation
of variables is always possible under the form

S@@iAnN=W@H—3 mii,, (3.41)
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where W is solution of
W
Ha(qﬁf, ——)=%m5-
dg?
If we consider these equations as an approximation of
geometrical optics of a quantum mechanics to be built, we

see that we should expect # evolution equations on the same
n-point dependent wavefunction

]/J\a‘l/zimgqf.

(3.42)

(3.43)

Tofirst order in the coupling constant, such a mechanics has
been built independently by Bel.!

D. Canonical formulation of the separation of
external and internal motions

This separation is made in the manifestly predictive for-
malism. Let us indicate first how to go from the Hamiltonian
formulation in the manifestly invariant formalism to the one
in the manifestly predictive formalism."

Let a bar denote the restriction on the hypersurface of
equation

x0=0, 7i=m v i(0—02)" 7%=m (1—-vi)y",
(3.44)

where the m,, are fixed. The restriction of 2 =dg5 Adp” is
3=0=dg* Ndp®. 3 can be shown to be invariant by the 10
vector fields H, P, J » K, givenin (1.7), the associated func-
tions through X being, respectively, given in terms of the
functions P, J,,, associated to P, .'IM, through 2 by

H= —P, P=P, Ji:%‘sijk-]jka K= —~Jp.

(3.45)
The 2n constraints x 2 =0, 7“7, = —m 2 show that there
exist 8n —2n =6 independent functions ¢/, and p’, of x %,
v/, and m, such that S=dq ! Ndp*.

The separation of external and internal motions con-
sists first in choosing some new canonical variables, called
external variables, whose motion is trivial and which gener-
alize at the relativistic level some characteristic properties of
the Newtonian center of mass. It is well known that P, the
total linear momentum and

Ki4pPit € ,P(e* P K"+J'H)

=" Hh (H+h)
_ (3.46)

h=(H*— P'P )",

the center of spin," form such a pair:
(Q'.0/1=0, [Q".P;1=6), [P, P;]=0, (3.47)
[Q7;]=€", Q" [P ]} =€, Py,
(Q".Hl=H"'P', [P,,H]=0.

Then define the internal symplectic form by
o=3—dQ NdP. (3.48)

2 is of rank 6n; computation shows that there are six inde-
pendent vector fields P;and k; whose interior product with o
vanishes
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k,=K,—Q,H—(H+h)'e*P,J, (3.49)

i(PYo=0, i(k)o=0.
Thus o is of rank 6(n — 1); and it is closed (do=0). From
Darboux’ theorem there exist 6(# — 1) independent func-

tions ¢"’ and p */, called the internal variables, such that ¢
can be written as

o=dq' Adp'{, a=23,..n.
From (3.49) and (3.50), the internal variables are thus solu-
tions of

g(Pj)qIL=O’ g(Pj)P "w=0

g(kj)Q'ﬁ}:O, g(kj)[’ ’L:O,
to which we add the condition that they should behave as

vector components under the rotation group (which is com-
patible with the preceding relations)

L= —€ugt, LUpi=—€up 'k

(3.50)

(3.51a)
(3.51b)

(3.51¢)

This allows

J=€, (Q"Pi+q%p D).
The general solution of (3.51a,c) is easy to write. To find the
boundary conditons to integrate (3.51b) we start from

3 =dq’ Ndp°. Let a bar now denote the restriction to the
hypersurface P,=0. To do this, particularize arbitrarily one

(3.52)

particle, say particle 1, by writing pj=— 3 pi; we obtain

a=2
>=d(@ —7)Ndp~ (3.53)
On the other hand, the restriction of
3=dQ'NdP,+dq' Ndp'?, a=2,3,...n, gives
S=dgi Ndp . (3.54)

The boundary conditions are thus, comparing (3.53) and
(3.54):

9':=4,~q\, p'{=p when P,=0 (3.55)

One can integrate (3.51b) by means of integrofunctional
equations respecting the above boundary conditions.

One shows at last that the internal Hamiltonian defined
as h=(H?—P'P)"* is independent of Q' and P, and is a
rotation-invariant function of the internal variables. Thus
H(Q'Pug'sp ')

=[P P4+h g qmud"p 4P 0 1)1 (3.56)

4. CONCLUSION

The equations of PRM have been integrated in a semi-
implicit form by means of coupled integrofunctional equa-
tions which respect the boundary conditions offered by field
theories. They allow to compute the accelerations step by
step, by postulating an expansion in powers of a parameter, a
coupling constant for example. Inversion yields the accelera-
tions of the explicit formalism; but two examples show that
one obtain better results, at equal number of terms, than in
the explicit formalism.
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In the Hamiltonian formulation of PRM, in which the
complete symmetry group is canonically represented, parti-
cle positions cannot in general be canonical variables. How-
ever [x%, x?] vanishes at the two lowest orders in the cou-
pling constant as a consequence of the existence in field
theories of private variational principles each admitting the
position variables of a particle as private Lagrangian
variables.

For a solution of the problem, the action, which pre-
sents itself as a curvilinear integral, does not depend on the
integration path, and is stationary with respect to a variation
of the solution.

The theory of Hamilton-Jacobi leads to as many com-
patible partial differential equations on the same generating
function as particles existing in the system.

The interest of the separation of external and internal
motions is to isolate six canonical external variables whose
motion is simple since the system as a whole behaves as a free
particle, thus leaving 6 (n— 1) nontrivial internal canonical
degrees of freedom.
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Canonical Fourier transforms
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An analog of the Fourier-Plancherel transformation is developed which maps to themselves the *“‘square-
traceable™ operators in the von Neumann algebra generated by a quantum-mechanical canonical pair (p,q).
The role of translation-invariant integral is played by the trace. The Fourier transform is given formally

by
X(p'.q)=sinatr,, e “9x(p g),

where a is a fixed parameter in the interval of (0,7). Comparisons are made with other Fourier-type

transformations associated with a canonical pair.

1. INTRODUCTION

Let p and g be a canonical pair of quantum-mechanical
momentum and position operators, that is, self-adjoint oper-
ators satisfying the Weyl relation

(s,t€R). (1.1)

By the von Neumann uniqueness theorem, the von Neu-
mann algebra N (p,q) generated by p and ¢ (that is, the von
Neumann algebra generated by the unitary operators

{e"”: seR} and {e"?: reR}) is isomorphic to the algebra

B (L *(R)) of all bounded operators on the Hilbert space

L *(R), under a canonical isomorphism v mapping each e*? to
"7 and each "9 to "%, where p, and q, are the Schrodinger
canonical pair, that is, p,= —id/dt and g, is multiplication
by the coordinate variable 1. In particular N (p,q) is thus a
type I factor and possesses a faithful normal semi-finite trace
7 which is unique to within rescaling.

e tspe itg —=¢ lste nqe isp

For arbitrary g and bR, the operators p+a and g+b
form a second canonical pair which generate the same von
Neumann algebra N (p,q), and hence there is an
automorphism T, ,of N (p,q) mapping each e’ toe"**“ and
each " to " ") We call T, , translation through (a,b).
Since every automorphism of the type I factor N (p,q) is in-
ner, for arbitrary XeN (p,q) we have

(T, X)=71X,
that is, the trace 7 is translation-invariant.

Our purpose in this work is to develop an analog of the
Fourier-Plancherel transformation on L*R) which acts in
the Hilbert space L(p,q) of “square-traceable’” operators in
N (p.g) [that is, pre-images under the canonical isomorphism
of Hilbert-Schmidt operators on B (L*(R))], in which the
trace 7 plays the role of the translation-invariant Lebesgue

measure on R. For suitably restricted XeL*(p,q) the trans-
form of X is given by

X= sinar,exp[—ia(pe®p+geg)lXel.

Here a is a fixed parameter in the open interval (0,7), and 7,
denotes the “partial trace” from N (p,q) ® N (p,q) to N (p,q)
(this is defined in Sec. 2). Abusing notation, we may write
this in the form

X(p'q")=sina tr, exp[—ia(pp’ +99")1X (0.9),

where p’ and ¢’ form a (mutually commuting) copy of the
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canonical pair p and g, and the functional notation indicates
membership of the corresponding von Neumann algebra. It
will be shown that the transformation so defined extends
uniquely to an isometry F , from L(p,q) onto itself, and that
its inverse is given, for suitably restricted XeL*(p,q), by

X (p,q)=sinatrp explia(pp’ +49)X (p'.4).
In a series of works'? it has been shown, in effect, that

the map from suitably restricted operators in N (p,¢) to func-
tions on R?,

X—>E  E(s,t)=(y/2m)yrexpl—iy(sp+1q)]1X
(here y is a fixed real nonzero parameter), extends to a
unique isometry U, , the Fourier—Plancherel-Weyl! transfor-

mation, from L*(p,q) onto L*(R?), whose inverse acts on suit-
able functions on R? as

EoX= (y/27r)fexp[i7/(sp +t9)1= (s,t )y ds dt.

It will be shown that the canonical Fourier—Plancherel
transformation F'is related to the Fourier~Plancherel-Weyl
transformation by

F,=U,'(FeF)U,

where F ® F denotes the classical Fourier—Plancherel trans-
formation on L*(R?),

Fe F=(s,t)= (27r)“f exp[ —i(ss'+ ") = (s',t")ds' dt',

and the parameters a and y satisfy a certain relation.

A canonical analog has been formulated of the Wiener
transformation,* which, in the case of one degree of freedom,
is a unitary operator W ; acting in the Hilbert space H ;
obtained by completing the space of formal polynomials in a
canonical pair p and ¢ with respect to the inner product

<X,Y>=a)3(YX*)’
where for X=X, ¢ ., p/q",
@ 5X)=trY ¢, p2abp o
K

pp=trexp[—48(5+q5) 1 exp[ 3B 5+40) 1.
(1.2)
Here Bis a fixed positive number. We shall show that if & and
B3 are related in a certain way, then
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Fo=VyWV5' | (1.3)

where Vj is the unitary extension of the isometric map
i ik 172
S eup’qg =Y cuptaor s
ik ik

to Hgand F, is taken to map L *(p,,qo) to itself. Thus for
suitably related a, 3, and ¥, the diagram
L*(R) FeF  L*(RY)

w, . Uu

L*(po,qo) ;’LZ(PO,QO)

Wwg'! Vgt
—
Hg w, Hpg

commutes. The relation (1.3) is an analog of the classical
relation

F=M7;'WM,, whered— (d—”)m,

dx

between the Fourier—Plancherel transformation F on L*(R),
the classical one-dimensional Wiener transformation W,
and the isometry M, from L*(R,dy) onto LR ) which con-
sists of multiplication by the square root of the density
dy/dx of the normal distribution dy on R. In this connec-
tion, the nonexistence of an infinite-dimensional analog of
Lebesgue measure which forces the replacement of the
Fourier-Plancherel by the Wiener transformation in infi-
nite-dimensional spaces has its analog in the fact that the
representations of the canonical commutation relations as-
sociated with the infinite-degree-of-freedom analog of the
states wg (extremal universally invariant states®) generate
type III factors which possess no nontrivial traces and which
therefore cannot support a Fourier—Plancherel type trans-
formation. By contrast the canonical Wiener transforma-
tion, like its classical counterpart, can still be defined.®

2. THE CANONICAL FOURIER-PLANCHEREL
TRANSFORMATION

Let N be a type I factor with faithful normal semi-finite
trace . Let N ® N be the von Neumann algebra tensor prod-
uct of N with itself, which is also a type I factor equipped
with the trace 7 ® 7 for which 7® 7(X ® Y)=7(X)r(Y). De-
note by . the class of traceable elements of N (which is
canonically isomorphic to the predual of N). Fix XeN, and
KeN @ N. For arbitrary Y® N., X @ Y is a traceable element
of N ® N and, since the traceable elements form an ideal, so
also is K (X ® Y'). Moreover,

(re KXo V)K|K||(reXe Y|
=|IK|[(r& r)X® |V
=|K[l~(}X))=(|N).

Hence Y+(7 & 7)(K (X ® Y)) is a bounded linear functional
on the Banach space N ., and so there exists an element ZeN
such that

T NKXeY))="(ZY).
We call Z the partial trace of K (X ® 1).
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Now let N=N (p,q) be generated by a canonical pair p
and ¢ satisfying (1.1). We wish to define the unitary operator
explia(p ® p+4q ® q)] for real a. We recall that the Fourier—
Plancherel transformation F in L*(R) intertwines the
Schrodinger operators:

FpoF'=qo,  FgoF'= —p,. 2.1
Hence, formally,
(18 F)(Po®Po+qo® go)(1 8 F)=po ® go—go ® po.

Byidentifying L *(R) ® L 2(R) with L *(R?), thelatter “angular
momentum’’ operator can be defined rigorously as the infini-
tesimal generator of the coordinate rotations in L *(R?), so
that exp[ia(p, ® go— ¢. ® po)] acts on feL *(R?) as

explia(po ® go—go ® po)lf (5, )
=f(cosa s+sina t,—sina s+cosa t ). 2.2)
We now define el@?®r+929)1 44

elia(p®p+q®q)l

=(evy'(1e F)'explia(p,® §o—q. @ p)I(1 ® F),

where v is the canonical isomorphism from ¥ (p,q) onto
B (L (R)).

Now let a be a fixed real number in the interval (0,m).
For XeN.=N.(p,q) we define the Fourier transform XeN as
the partial trace of sina e “*?®7+9°9X g 1. [The normal-
ization factor sina is convenient if the trace in ¥ (p,q) is nor-
malized so as to transform into the standard trace on
B (L *(R)) under the canonical isomorphism, as we shall as-
sume to be \t}le case.] Similarly, we define the inverse Fourier
transform X of X as the partial trace of
sing P eP+IcN)x g |,

We observe that

It <l X1 <(1X, 23)
where || ||, is the trace norm in N .(p,q).

We denote by S (p,q) the space of elements of N (p,q)
which are pre-images under the canonical isomorphism v of
Hilbert-Schmidt operators in B (L*(R)) whose kernels (as in-
tegral operators) lie in the Schwarz space .S (R?) of infinitely
differentiable rapidly decreasing functions on R. If for
XeS (p,g), vX has kernel £S5 (R?) then XeN.(p,q) and (X ) is
given by

T(X)=J.§(t,t) dt.

We shall prove that the mapping X' X maps.S (p,q) iso-
metrically (in the sense of the L 2 trace norm) onto itself and
that its inverse maps XS (p,g) to its inverse Fourier trans-
form X. Since S (p,q) is dense in L *(p,q) [because S (R?) is
dense in L 2(R?)], the Fourier transform mapping on S (p,q)
can thus be extended uniquely to anisometry F,, from L ¥(p,q)
onto itself whose inverse is an extension of the inverse
Fourier transform mapping on S (p,q). By the boundedness
relations (2.3) and the facts that convergence in the trace
norm in N.(p,q) implies convergence in L ? norm and that
convergence in L > norm implies convergence in operator
bound norm, it is clear that ¥, and its inverse map arbitrary
elements of N.(p,q) into their Fourier and inverse Fourier
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transforms respectively. Thus we shall have proved the fol-
lowing Theorem.

Theorem 1: The mapping from N(p,q) into N (p,q)
X—X, where X is the Fourier transform of X,

AN

X=sing re @rertisdy g |

extends uniquely to an isometry F,, from L (p,q) onto itself,
the restriction of whose inverse to N.(p,q) is the mapping
X—X, where X is the inverse Fourier transform of X,

~ N .
X=sinag re?®er+iedy g1,

Proof: 1t is convenient to identify p and ¢ with the
Schrodinger canonical pair. Thus, let XeS (p,q) =S5 (po,qo)
have kernel £€S (R?), so that, for feL%(R),

Xf(s)=f§<s,t)f(t yr.

For f, geL*(R), we denote by g*f the operator h-+{g,h)f.
Then we have, for arbitrary f, geS (R),

& XfH>=1uXg*f
=sina trexp[ —ia(p @ po+qo ® ¢o)1X @ g*f
=sina tr(l ® F)'exp[—ia(p, ® go— o ® Po)]
(18 F)X e g*f, (2.4
where tr denotes the standard tracein B (L(R)). Now X ® g*f
is the integral operator in L}(R?) =L*R) ® L(R) whose ker-
nel is
§|(Snszytut2) =§ (sl’tl)f(SZ)g(tZ) .
Itisclear that £,€S (R*). From this it follows successively that
the kernel of 1 ® FX @ g*fis
§2(slys2ytlyt2) =§ (sl’tl)f(sl)g(tz) H

where}”\is the Fourier transform of £, the kernel of
exp[ —ia(p, ® go—qo @ p)J(1 @ F)X @ g*fis

§3(S1,52,tnt2)
=& (cosa s, —sina s,,t))

x}”\(sina s.+cosa 5,)g(2,)

[making use of (2.2)], and that the kernel of
(1® F)'exp[—ia(p, ® go— g0 @ po))(1 & F )X ® g*fis given by

§4(s,,s2,tl,t2)(1/\/ 27) Jexp( (535 ))E5(51y S ptists) ds .

Moreover, each kernel belongs to S (R*). Since in particular
£.€S (RY), it follows that the trace in (2.4) can be evaluated as

J-§ o(81,52,51,5:)ds, ds,
=1 /\/—277'—J J f exp(isS )Ex(51, 5 251,5,) dS 5ds, dis;

=V -E;J J fexp( 1538 ))E3(S1, S 2,51,52)ds:ds 5 ds
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, ~ .
=J fg (cosa s, —sina s ,,s,,) f(sina s,

+cosa s,) g(s,) ds.ds ),

the change in order of integration being justified since the
integrand is in S (R*). Making the change of variables

t=sina s,4+cosa 5, S=—5,,

we obtain

&XF

=J fg‘ (cotat + cscas,cscat+ COHZS)_?(t ¥(—s) dsdt

=f £(st) f(t) (—s) dsdt, (2.5)
R\lvm

where, for areal 2 X 2 matrix M, R, is the operator in L}(R?)
Ry f(s,t)=f (s, )M)

and M («) is the matrix

csca  cota
M (a) .
cota  csca
Using the Plancherel identity in L*(R?), the relations

F®F R y=R ., F&F (2.6)

Ezéi
whereg(s) =g(—s),and thefact that M (a)'=M (a), we write
(2.4) as

&> = j L Fe& FE (5,0 )f (1 )E)ds dt.

Moy !

This being the case of arbitrary fand ges(R) shows that the
bounded operator X is the Hilbert—Schmidt operator whose
kernel is

E=Ry o) FOFE.

Since both F& F and R, ) are isometries in L *(R’) map-
ping S (R?) onto itself, we deduce that the mapping X—X
maps S (p,q) isometrically onto itself in the sense of the L *
norm, as claimed.

Q.7)

Our argument is applicable to the mapping X—X by _
replacing a by —a; in particular if X has kernel §€$ (R?), X
has kernel

£=R M(_a)v,F®VF§.

Hence the kernel of X is given by

Rpr(—apF®F Ry FOFE
=F8F R yy_oR My FOF§
=F®FR_JFeFt
=(FeF)y'FeFt

=¢,
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where we make use of the relations (2.6),
M(—a)=—-M(a),

and
Fe®FR_,=(FeF)

~
AN
A similar argument shows that X 'X and the theorem is

proved.

The isometry F , is called the (canonical ) Fourier—
Plancherel transformation.

3. THE CONNECTION WITH THE FOURIER-
PLANCHEREL-WEYL TRANSFORMATION

For XeN.(p,q) the Fourier—-Weyl transform

Fs0)=(r/V 2 yre—mwr@x G.1)

(where ¥ is a fixed nonzero real number) is a well-defined
bounded continuous function on R% [Boundedness follows
from the inequality

Y re —iMsp+@) y
27

|Z]|=sup|= (s, )| =sup
steR steR

< sup M_He —ivisp+1q) ”7-(‘_}(’)

streR 277,
17 xy,
27

and continuity is easily deduced from the strong continuity
of the operator-valued function on R

(s, )—>exp[—iv(sp+1g)] =expl(—isy’st)
X exp(—iysp)exp—iytg).]
We identify p and g with the Schrodinger canonical pair

and consider XeS (p,q) =S (p0,¢o) having kernel £€5 (R?). Us-
ing the action in L *(R) of exp[ —iv(spo+ 1g0)],

exp[—iy(spo+1g0)lf (1) |
=exp[—iye (u—syslf (u—ys),

the kernel of exp{ —iv(sp +2¢)]X is found to be
§i(u,v)=exp[—iyt (u—3y9))§ (u—vsv).

(3.2)

Since £,€S (R?) the trace of this operator can be evaluated as

J-g‘x(u,u)du =fexp[ — iyt (u—Lv9) )& (u—vs,u)du
:y—IJe ‘itu'é- (Vlu'—%VS,}f‘u'-{-lz—s)du’,

making the substitution &’ =y(u — Lys). Hence the Fourier—
Plancherel-Weyl transform of X is given by

where K () is the matrix

—¥ %r)
k=0 1)
M=

(3.3)
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Since 1 ® F and Ry, are both isometries from L*(R’) onto
itself leaving .S (R?) invariant, the Fourier—Weyl transform
mapping maps S (p,q) isometrically onto.S (R?) in the sense of
the respective L? norms. Moreover, its inverse maps an ele-
ment ZeS (R?) into the Hilbert-Schmidt operator with
kernel

E(s,t)=Rg (18 F)Z (s5,2).

It may be verified using (3.2) that this is the operator-valued
integral

X=@/V2r) Jexp[ — iy(spo-+ 1go))E (5,8 )dsdt,

but we shall make no use of this.

The Fourier—Plancherel-Weyl transformation U, is the
unique isometry from L *(p,q) onto L 2(R?) which extends the
map S (p,g) D X—Z, where Z'is given by (3.3). It may then be
shown that U, maps arbitrary XeN.(p,q) according to (3.1),
and thatitsinverseactsonarbitrary =€l (R)nL (R?) accord-
mg to (3.4).7#

Letusnowconsiderthemap U WFeF YU, fromS (p,q)
to itself. If X has kernel &, then, using (3.3) we see that U ;"'
(F® F) U X has kernel

Rey (18 FY'(FRF)(18 F)Ry (6
:RK(V),‘ F@FRK(y)é'
=RK(7)" R(K(V)')" Forg

=R yxon FOF,
using (2.5). Evaluating the matrix (K (»)'K ())! as
LY —r‘2+érz)
K WK®@Y ‘=(
OED=prie

and comparing with (2.7), we see that the operator
U'(Fe F)UX coincides wih F, X for all XeS (p,q), and hence
for all XeL*(p,q), provided that

ssca=p iy, cota=r iy,
that is,
2 tan”'(37* <2
:{ an'(y) (<] 3.5)
2tan'(2y?)  (¥*>2

We have proved the following:

Theorem 2: Provided that the parameters a and y are
related by (3.5), the canonical Fourier—Plancherel transfor-
mation F,, the Fourier—Plancherel-Weyl transformation
U,, and the Fourier-Plancherel transformation F® F on
LA(R?) satisfy

F,=U,'FeF)U,.

4. THE CONNECTION WITH THE CANONICAL
WIENER TRANSFORMATION

A canonical analog of the Wiener transformation® ' has
been formulated,'! which, in the case of one degree of free-
dom, assumes the following form. Consider the Wey! algebra
« of formal polynomials in elements p and g satisfying the
Heisenberg commutation relation

R.L. Hudson and S.N. Peck 117



pq—gp=—i. 4.1
Equip «# with the involution * for which p=p* and g=¢*.
The map p™q"—pg'qg, where p, and g, are the Schrédinger
canonical pair and p}'q; hasdomain S (R ), extends toa repre-
sentation 7, of (.&/,*) in the sense of Powers,'? and the
formula

whAd)=trm(d )pg

where /3 is a fixed positive number and p, is given by (1.2),
defines a state wg of («/,*) analogous to a normal distribu-
tion." It can be shown' that 7(4 )p, is traceable. Since the

elements \/2p ® 1File®pand VaslFile q of the alge-
braic tensor product .« ® </ satisfy (4.1), there are unique
isomorphisms 77+ from &/ into .&/ ® &/ which map p and ¢
into these elements. We may abuse notation by writing
A(V2pe1F1ep, V2g817Fileg) for the image of
A=A (p,q), under 5 ... The Wiener transform of an element
Ae./ is the element A = wg n- A, where g, is the linear
mapping from ./ ® ./ to .« for which wg (4 ® B)

=wp(A )B. Formally

Z(p,q):trpmq”A (\/Zpo—zp, \/Zqo—iq)pB.

It can be shown'® that the mapping A—Ais bijective on &7
and isometric in the inner product {4,B>=w4(BA *), and
hence extends uniquely to a unitary operator Wp, the canoni-
cal Wiener transformation on the completion H of the inner
product space .«7. The inverse Wiener transformation acts
on .« as wg 7., so that formally,

Wi'A@g)=tr, , ANV 2po+ip,V 20+ ig)p,

It can be shown'® that the mapping .« D A—7(4 ){2;,

where £2;=p}?, extends uniquely to an isometry ¥, from Hy

onto the Hilbert space L *(p,,q,) of Hilbert-Schmidt operators
on L %(R).

Theorem 3: If

tana =sinh(4f),
then

F,=V,WyV 5"

Proof: We introduce elements H ,,,,, of </, analogous to
Hermite polynomials, by means of the generating function

G (u,v)=expli(up +vg)+30° (1’ +v7)]

“.2)

_ S mumn,
m,n=0
where
ot =coth(}f)=csca 4.3)
{so that"
tr exp[i(upo+ vgo)lps=exp[ — o (u* +v)]}. (4.4)

The Wiener transforms of the elements H ,,, ,, are found from
the formal calculation

W 5G (u,0)
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= trpo’qoexp{i [a( \/Epo —ip)+u( \/qu —iq)
+407 (1 +v)]}
={tr, ,€Xp Li \/Eupo + \/quo) Ip s}
X explup +vg +4o*(u’ +v?)]
=explup +vg— o (1* + V)] =G (—iu,—iv)
using (4.4). From this it follows that
WgH, ,=(—)"""H,,,. 4.5)

Nowlet 4, , be theimage of H ,, , under V. We show
that the 4, , are eigenvectors of F', with eigenvalues
(—i)"*". We introduce the generating function

glu,v)= i Bt 0"
mn=0
=exp[i(up,+vgo) + jo7 (1 4+ v) M2,
Now the kernel &, of the operator {2 is given* by

Sos,ty=m"" exp[—4coth(48)(s’+1 ?) + csch(3B)st ]
—rexp| —460om @ ()]

using (4.2). Using the action of exp[i(up,+ vg.)],
expli(upo+vgo)lf (s) =expliv(s+ su)]f (s +u),
we deduce that the kernel of g(u,v) is given by

£(s,t;u,v) =exp[io*(u? +v?)] expliv(s+ u)]

=exp[ioi(—u+vY)+Liuv] (4.6)
X explivs +u(csca s—cota t )]
X exp[ —i(s)M (a)"( j)] “.7

using (4.2) and (4.3). Since this kernel is in § (R?), we may
apply (2.7) to (4.6) to obtain that the kernel of F, g(u,v) is
given by

&(s,tu,v)=explio*(1* +vY)]
X exp| — iul(csca s — cota t )+ 4v)]
XR pg ey F @ FLls—0,t) .

Now the Fourier transform of the quadratic exponential

sto=r el e ())

is obtained by inverting the matrix of the quadratic form;
thus

s

F® Fiys,t)y=n"" exp[ —4(s, )M (a)(t )]

From this we see that

Ry oy F® FEo(s,1)
s
t

I exp[-as,r)M(a)“M(dXM(a)""( )]
=&o(s,t)
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(Thus £2 4 is its own canonical Fourier transform.) Using
this fact together with (4.3), we obtain

E(s,t;u, v)=exp[io*(u*—v?)—Liuv]

X exp[vt —iu(csca s—cota t )]

X7 2exp[—L(s,0 )M (a)“("; )]

={ (s,t; —iu,—iv) 4.8)
by comparison with (4.7). From (4.8) we obtain that
F, g(u,v)=g(—iu,—iv) and hence that
Fahm,nz(_i)m+nhm,n (49)

as claimed.

Comparing (4.5) with (4.8) and recalling that
hon=VgH, ,, wesee that the unitary operators Wz and
V5'F,V zin H g both have the elements H ,,, , as eigenvec-
tors, with the same eigenvalues (—:)™*". Now inspection of
the generating function G (4,v) shows that H, , is of the form

H, , =i"""(maly'p™q"+J,, ,,

m.n
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where J,, , is a polynomial in p and ¢ of degree less than
m+n. It follows that the elements H,, , span the space /.
Hence the unitary operators W and ¥ 5 'F , V 5 possess a
total set of eigenvectors on which they have the same eigen-
values. Hence they are coincident. From this it follows that
F,=VgWgV;', and the theorem is proved.
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New exact solutions of the vacuum Einstein field equations are constructed which describe the collision of
plane gravitational waves. These solutions generalize those of Szekeres by relaxing the requirement of

collinear polarization.

I. INTRODUCTION

Penrose’ discovered that in the field of plane gravita-
tional waves null rays are focused on certain hypersurfaces
where the Riemann tensor takes divergent values. Another
situation where such focusing effects appear explicitly is the
collision of two gravitational plane waves where each wave is
focused by the field of the other and the resuiting configura-
tion possesses a space-time singularity. All these properties
are verified by the exact solutions of Einstein equations given
by Khan and Penrose? for colliding impulsive waves and
Szekeres’ for shock waves. These solutions, describing the
collision between plane gravitational waves with constant
linear polarization enable us to study the details of this focus-
ing. It is natural to ask how the focusing properties and the
resulting space-time singularity are modified when we intro-
duce new degrees of freedom into the problem. For this pur-
pose we have recently presented a new solution of the vacu-
um Einstein field equations which describes colliding
impulsive gravitational waves with linear but not necessarily
collinear polarizations.® This implies that the colliding plane
waves are still linearly polarized but their directions of polar-
ization are out of phase by a constant phase parameter. We
have pointed out that certain features of the problem are
modified; for example, the collision results in giving an angu-
lar momentum as well as a mass aspect to the gravitational
field in the interaction region. The physical space-time sin-
gularity on the other hand, although undergoing minor
modifications by this additional degree of freedom, is still
present. Furthermore Szekeres’ conclusion that the space-
time singularities arise inevitably for arbitrarily weak incom-
ing gravitational waves remains valid in this new situation as
well. The general problem which takes into account the ef-
fect of arbitrary polarization has been considered by Sbytov®
who showed without giving explicit solutions that the phys-
ical singularity appears even when the effect of arbitrary po-
larization is taken into account. The singularity in these so-
lutions of Einstein’s equations results from the assumptions
of planar wave fronts as pointed out by Penrose' a long time
ago.

In this paper we shall present a family of exact solutions
which generalizes the family of Szekeres to the case of non-
collinear polarizations. The first member of this family (i.e.,
impulsive waves) has already been given in Ref. 5. The plan
for this paper is as follows: In Sec. IT we shall review the
Szekeres’ solutions and cast them into a form where the col-
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liding waves initially have a constant phase difference be-
tween them. Our method for obtaining the new solutions is
based on the theory of harmonic mappings of Riemannian
manifolds due to Eells and Sampson.” The application of this
theory to general relativity®° proved to be a useful technique
that facilitates the solution of many problems. For the paper
to be self-contained we shall briefly present the necessary
tools for applying the theory of harmonic maps.

In Sec. III using harmonic maps we cast the basic field
equations of this problem into a form similar to Ernst’s"' for
axisymmetric fields. The solutions is then immediate, and we
adapt a solution which involves two arbitrary constants. One
of these constants which corresponds to the relative polar-
ization angle of the incoming waves is an analog of Kerr’s
rotation parameter. The second constant on the other hand
is a Taub-NUT like parameter which has no immediate
physical interpretation for the colliding wave problem. Fur-
thermore, there are other solutions of the field equations
which include a Weyl-Tomimatsu-Sato parameter, but
these solutions must be excluded as they do not reduce to the
desired incoming and outgoing plane wave solutions. While
in the family of Szekeres’ solutions there are two indepen-
dent parameters, we have been able to generalize them only
for the case when these two parameters are equal. Finally in
the Appendix we calculate the Newman-Penrose' curva-
ture components which manifests the singularities of these
solutions.

1. COLLIDING PLANE GRAVITATIONAL WAVES

Grvaitational plane waves are described by the metric
for p-p waves"’

ds*=2duldv’ —dx"*—dy*—2H (x',y',u')du"?, 1)

where H (x',y",u") is the real part of an analytic function in
x' +iy’ and an arbitrary function of #’. For plane waves with
constant linear polarization H (x',y’,u’) takes the form

H(x'y'w)=h @)y —x"), (2)
where 4 (1') is given in the case of Szekeres’ family of solu-
tions by

h @) =u"8w)

n(1—n)2—1/n)"u(’) *"~ V8 (uu’))
8(1—u " ()0 (u(u'))?

3
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where 4’ is the harmonic coordinate appearing in the canoni-
cal form of the line element (1) while  is the Rosen coordi-
nate whose relation to #’ is given below. Here, 8 denotes the
Heaviside unit step function and the integer » satisfies the
condition n>1. We notice here that, for n=1, h (") =5(u")
which corresponds to impulsive waves while for higher val-
ues of n it corresponds to shock waves. For discussing the
problem of colliding waves it is necessary to obtain a C° form
of the metric, we therefore transform to the Rosen form

ds?=2e "Mdydv—e ~Y[e " cosh Wdx?

+e ~Vcosh Wdy* —2sinh Wdxdy |, “4)

where M, U, V, and W are functions of the null coordinates
{(u,v) only. For the case of Szekeres’ family Rosen form is
accomplished by the transformation

X' =(1—u"6)?""*1+u"0)"* "X,
y=(+u"0) "1 —u"0) 2y,
u’=J0u(1~u Y=V gy, (5)
vV=v+inu" 0w 1—-u? @) 1?
X [k—u"0 @) 1+u"8w)]"?
X[M—u"8@) >~V [k+u"0 ()]

X[1+u"0@)] [ 1—u"0 )]},

where « is a real parameter related to » by
K=2—1/n (6)
and the Rosen form of the metric is given as

ds?=2[1-u? 81"~ dydv—[1—u > 6 (u)]
X{[1=u"8@)] *[14u"6w)]"dx?
+14+u"0@)] ™ [1—u"0w)]*dy* }. N

The metric (4) represents the most general form for plane
waves with arbitrary polarization. In the case of linear polar-
ization we have the simplifying feature that W=0, but in this
paper we shall investigate the collision of linearly polarized
plane waves with a relative phase difference which require
two mutually nonorthogonal Killing vectors £, and £,. So we
shall now introduce a new parameter which measures the
angle of polarization of the gravitational wave within the
coordinate system under consideration. For convenience we
choose this parameter to be the angle of rotation of (X, ¥)
coordinates in accordance with

X+iY= ™20 (x4 ), ®
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o being a real parameter. Now we obtain the metric (7) in the
form

_ 1—p?)
ds?=2(1—p?) =120, 0, ( 14
s?=2(1—p%) udy— ——o——

x{[1+P+(1 —P?) sinax]dx
+[14+P—(1—P?) sinax]dy?

+2cosax( P> — 1)dxdy },

where

P= (:—;ﬁ—)x, p=u"6(u). )

Let us note that with this choice of the rotation angle the
choice ax=7/2 results in Eq. (7). In order to discuss colli-
sion of gravitational plane waves, it is convenient to consider
space-time manifold in four disjoint patches as in Fig. 1. Let
us consider two gravitational plane waves travelling in +z
and —z directions. Prior to the collision of these waves the
space—time region between them (region I) is Minkowski
space while region II is given by the nonflat metric (9). We
obtain region III from region II by replacing 1 <« v and

a < B everywhere. In region II we shall employ the follow-
ing null tetrad,

2y (1 —1/m)/2 [}

l,u___(l——p) ! 6;t’
— 1

n#—6ﬂ,

m’uz—_z-l/z [(1,_p)<1)~)/2(1+p) (I+»c)/25yz

+i(4p) (A=) T8 ), (10)

FIG. 1. Space-time diagram for colliding gravitational plane waves.

Mustafa Halil 121



and we find that
A=ncu"'0 (W) —p?) (/=372

h=—nu 2"‘16(u)(1 —p?) (W/n=372

z/1..=xn (1__p2) 1/:1--3[(1_n)u n42_u "7]5(1{) ], (11)

aretheonlynonvanishing Newman—Penrose (NP) quantities.
The metric (7) represents a type N field. Similarly for the
region 111 the nonvanishing NP quantities are o,p, and 1.
We shall now consider the space-time geometry in the inter-
action region using these solutions as boundary conditions.
The resulting space-time in the interaction region (region
IV) becomes algebraically general.

The Einstein field equations for the metric (4) are well
known, but as in Ref. 5 we shall use of Eells and Sampson’s
theory of harmonic mappings of Riemannian manifolds to
cast the problem into a simple form. We consider two
Riemannian manifolds (#,g) and (31’,g’) with dimensional-
ities n,n" respectively and a map M — M. Eells and
Sampson’s energy functional, which in local coordinates is
given by

, afA 9]/1 .
E :J‘ S U L 2d "x, 12
3] 8 ap ki 8 lg | (12)

defines an invariant functional of the mapping. We shall be
interested in those maps for which the first variation
vanishes

8E (f)=0, (13)

i.e., harmonic maps. We had shown earlier that the Einstein
field equations for the metric (4) are obtained as harmonic
maps where M is a flat two-dimensional manifold with the
metric

ds*=2dudv (14)

and M’ has metric
ds*=e " Y(2dM dU +dU*—dW*—cosh*W dV?)  (15)

If we vary the energy functional formed from these two met-
rics, we obtain the Einstein field equations first obtained for
this problem by Szekeres who used a different approach
based on the Newman-Penrose formalism.

. NEW FAMILY OF EXACT SOLUTIONS

We shall now derive a new family of exact solutions of
the Einstein’s field equations which correspond to the colli-
sion of linearly polarized plane gravitational waves with dif-
ferent phase parameters. These will generalize exact solu-
tions for collinear polarizations given by Khan~Penrose and
Szekeres. For this purpose we shall consider the metric for
M’ manifold. As we noted earlier the 2-section of this mani-
fold spanned by ¥ and W coordinates is a space of constant
curvature, but in order to change this line element into the
normal form we first imbed this 2-section in a three-dimen-
sional flat manifold. The imbedding coordinates are given by
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a=coshV cosh¥ 4sinh W,
p=cosh¥ coshW —sinh W,

y=sinh¥ coshW, (16)
subject to the constraint
aB—y'=1. 17

The relevant part of the metric becomes dadfi—dy>.
Now let us choose a new parametrization which satisfies the
constraint Eq. (17) by letting

a =cosv sinhw +-coshw,
= —cosv sinhw 4 coshew,

y=sinvsinhw, (18)
the metric of M’ then takes the form
ds"=e ~Y(2dM dU+dU*—dw’— sinb’e dv?), (19)

which is the required form. Once we have cast the metric of
M into this form we introduce a complex function 7 which is
defined by

—e iv/l(tanh _&i’ 20
7 » (20

where « is a constant so that the metric of M’ becomes

ds'i=e ~ U(sz dU+dU* — 4 ——dﬂd_ﬂ__), @1
(1—n7)y
where the bar denotes complex conjugation. Varying the en-

ergy functional constructed from the metrics (14) and (21)
with respect to M, U, and 7, we get the field equations

(e =0, (22)
2Muu+ Uuuzsz(‘I)"ﬁu—}— 770'77,,)(7777* 1)_15 (23)

27]1“)"Uvnu—Uunv:47—7nunv(nﬁ——l)_l‘ (24)

There is an analogy between Eq. (24) and the Finstein’s
equation for stationary axisymmetric gravitational fields in
Ernst’s formulation

EE—-N)E=2£67EVE. (25)

Note, however, that the definition of 7 in Eq. (20) is entirely
different from Ernst’s £. The crucial point here is the follow-
ing: We want the coupled partial differential equations to be
a familar set of equations so that we can directly write their
solutions, but the choice of dependent as well as independent
variables are further restricted by the requirement that the
resulting solution should have the proper boundary condi-
tions. These considerations suggest that we search for a co-
ordinate transformation so that we can pass from the patch
{u,v} to another patch {r,0} which has properties analo-
gous to prolate spheroidal coordinates. This transformation
is given by
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T=u”(1—02")'/2+v"(1——u Zn)x/z’

a:u"(1—vz")"2+v"(1—u2”)"1, (26)
where n> 1 is an integer. Under this change of coordinates
the metric of M is transformed into

dr’ _do* )’ @7

ds=0(r, (
S=2 N E T e

where the conformal factor «2 is irrelevant because it does
not enter into the energy functional in Eq. (12). The useful-
ness of these new coordinates will appear when we rewrite
the differential operators in the field equations using the
{70} coordinate patch. First we note that in region IV

e U=l—u’" -0 =(1—-7)"(1—-0)" (28)
and two useful identifies are given by
2%, ~U ¥, —U, ¥,

=2 {[[A-) Y. .- [(1-) Y, ]} (29)
VX ot¥ox.

=2(r,0) (1= ¢, x,—(1-0) ¥, x,}s (30)

where ¢ and y are any two functions which are at least twice
differentiable. It is straightforward to show that Eq. (24) in
the coordinate patch | 7,0} is given by

(i —DHQA=7)7.),— [(1=0D)7,],}

=27{(1 =)~ (1 -0}, €2

which is the familiar Ernst’s equation. It is well known that it

where the arbitrary constants @ and £ are chosen to be polar-
ization parameters in regions II and III respectively. Taking
into considerations the boundary effects of the different
space-time regions, we let # — 46 (u) and v — v (v) so that
the solution (32) is equivalent to

n=epw+ePqr, (33)
where
p=u"8w), q=0v"0@), r=1-p, w=1—¢

Comparing the solution (32) with that given by Ernst for
axisymmetric gravitational fields we immediately notice
that (@ —/f3)/2 plays the role of a rotation parameter while
(a+/)/2 is the Taub—-NUT parameter. Using this solution
in the {u,v} patch [i.e., Eq. (33)], we shall proceed to con-
struct the space—~time metric and show that it has the correct
boundary values. This amounts to the determination of M,
U, V, and W. From the definition (20) and (33) we read the
solutions for @ and v,

sin LA l (pw sina +gr sinf), 34
K [n
sinh & — 21 (35)
kK l—pmf

The original metric functions ¥ and W are given in terms of
w and v by

g2V — COS® +sinv sinhw

admits a solution of the form = cosho —sinw sinhe’ (36)
77=e"[("+5’/2][7'cos (‘i‘—ﬁ) +io sin(i’—’ﬁ)], (32) , ,
2 2 sinh W= cosv sinhw. 3D
In order to determine M, we integrate (23), so that the final solution for the metric functions is given as follows
e V=r=1-p—¢, (38)
e M=r'(rw) (- ", (39)
sinh e 117 [<1+|77])"_<1—l77[)"]’ (40)
LA B 1+
v (LD @it + 7" — )+ (1 — ) Q@ilgl — " +77) @)
(D> Qi — 7+ 7+ A =) > Qi + 7 —7°)
where n and « are related by (6). This solution may be expressed in terms of a null tetrad defined as
[,=e M?28°,
n=e M8,
m,=4e " [e"?(isinh §W— cosh {W)8} +e ~*"*(sinh§ W—i cosh )52 ). (42)

Now let us show that in the second region limit the solution (38)~(41) coincides with the Rosen form (9). For this purpose we set
q=0 and obtain the solution

U —
eV=r=lp, 43
oM _gent (44)
123 J. Math. Phys,, Vol. 20, No. 1, January 1979 Mustafa Halil 123



sinhW=%cosax[(l+p )K~(1_p )K],
1-p t+p

v (14P) > +(1—p) > +sinak[(14+p) * —(1-p) ']
(14p) > +(1=p) > —sinax[(1+p) * —(1—p) >’

(45)

(46)

which gives the metric (9) so that the boundary conditions are satisfied. For n==«=1 our solution (38)~(41) takes the form

e —-U = t2=1~—p2—q2,
e M _tl_ [+ 2p*¢* —2pqrw cos(a—pB) 1,
rw

2(pw cosa +gqr cosff)
£+ 2p*q* —2pqrw cos(a—f) ’

sinh W=

(47)

(48)

(49)

02V — 1 +p*w? +g*r* + 2pgrw cos(a —3) + 2( pw sina +gr sinf3)

L+ p*w +g*r + 2pgrw cos(a — ) — 2( pw sina +gr sinf3) '

p=ub(u), g=v0(v),

(50)

which is the solution reported in Ref. 5. In the limit @ =/8=7/2 this solution reduces to the solution by Khan and Penrose,

e V=r=1—p—¢, (51
eM_p I | (52)
(pg+rw)
w=0, (53)
V= [Hd ¥HP (54)
r—q w—p

Finally, in the limit ka =Bk =7/2 for =2, k=(3/2)""* the
solution (38)—(41) reduces to

e-UEt2=1__p2_qz, (55)
o M_p W (56)
(pgq+rwy
=0, 57
|

APPENDIX: SINGULARITIES

(A

which corresponds to the solution given by Szekeres. We
have therefore generalized Szekeres’ family to the case of
linear but noncollinearly polarized plane gravitational
waves for the case when Szekeres’ parameters n, and n, are
equal. In another publication we shall show that gravitation-
al wave and stationary axially symmetric fields can be treat-
ed in a unified manner," where the solution of one class
enables us to derive solutions to the other class and vice-
versa. This procedure can be extended to Einstein-Maxwell
fields as well.
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In order to see the physical singularities of our solutions, we calculate the curvature invariants which are as follows:

Rey,=n* 2

"t (—pqrw , (£+2p°g’) cos(a —ﬁ’)»qurW>
o K 2)2 ’
r (1 —[mP)

n—1,,n-1
Imy,= — wnu” " 6w ) (|9 |*—8p*g*r'w?) coshw sin(a —f),

rwipP(1 —fml’)
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_ —Kn _ ) notg qw_ inho-cosha-sin(@ —B) + 2sinvZ
ey, = 2 A1 T cosveinhia) [([( n—Du""*0(u)+u (u) ]( " cosvsinhw-coshw-sin(a g )
EIEE p(1—k>) 3p K+ Digf—1 4coshw’Z
+n (7 (u){ - cosv-sinhw-coshw-sin(a B)( = o + i) bl —?ﬂlz))

2sinv s pqw _ __22 3p _«kp (22 —3)n*+1
o - P enta—- Lz (S - S+ S|

2w2

sinv sinho-coshw  sin’(a —f5) })]
1 4 cos*vsinh’w U/l '

_ p TP n—1g 2cosvcoshw
I = = (T cosveiniia) [([(” Yu "0 @) 00 ]( 1—pp
__gwsinysinhwsin(a —B) ) nu 2(,,‘1)0(2‘)[ 2cosv-coshw [r(l _2gy— P2
b I={nl’ 4
: A+ (-3 f*~1 ., _p (3 K
X (14-2¢%) cos(a—pF)+ T P VA 1—|77|2(’2 rz)]

qw . L -« 3 2[(k*+1) |5 |2—1]
- 7] sinv sinhw sin(a ﬂ)[p(——r2 t2)+ PP TR, Z]

24492

K|q w‘} cosv sinhe-cosh’e sin(a — 5)- | | sinv-cosha sin(a —f) Z ])]’
rim 77

¢l 11’3 O ¢0_¢’4 (u «— U,a ‘__’ﬁ)’

where

Z=pr(1—2¢)+gw(1—2p)cos(a—pB) and cosv= T dcoshw= (1+ 71 )K—— ( L~ |n] )K
29| 1—17] 1+ 7|

are to be substituted into these expressions. We observe that r=1w=0 are singular surfaces expected from the focusing proper-
ties of the incoming waves. Same singularities arise from the roots of |7|=0. This is equivalent to

P+ ¢ —2p*q* = 2pgrwcos(a —f3), other roots of which depend on (@ —f3). The spacelike singularity ¢ *= 1 —u*" —v*" =0 reap-
pears in the above invariants as well. We notice further that another singularity is provided by 1 —pf=0, whlch is equivalent to
t *=2pq[rwcos(a — ) — pq], which gives additional singularities depending on the values of @ and S. For example, the choice
a—pf=2n—1)r/2 gives t *= — 2p*q* which is satisfied for two symmetric hyperbolic branches starting at («u=1, v=0) and
(v=1, u=0) and going in the increasing u,v directions so that it lies beyond the main singularity ¢ *=0. The singularity =0
seems to be the essential feature of colliding plane gravitational waves.
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Convergence of the Debye expansion for the S matrix

A. Cruz and J. Sesma

Departamento de Fisica Teérica, Facultad de Ciencias, and Instituto de Fisica Nuclear y de Altas

Energias, Universidad de Zaragoza, Zaragoza, Spain
(Received 30 May 1978)

The convergence of the Debye expansion for the scattering of a scalar wave by a homogeneous sphere of
complex refraction index, or, equivalently, of two particles interacting via a complex rectangular well (or
barrier) potential, is considered. The interest of the results lies mainly in their applicability to

hadron-nucleus and nucleus-nucleus collisions.

1. INTRODUCTION

Almost ten years ago, Nussenzveig showed the useful-
ness of the Debye expansion of the scattering matrix in the
explanation of the atmospheric phenomena known as “rain-
bow’ and “‘glory.”' He considered a scalar wave of wave
number &, incident on a transparent sphere of radius a and
refraction index N. Using adimensional wave numbers,

B=Nka, (1LY
for the exterior and interior regions of the spherical surface,

the component of angular momentum / of the S matrix can
be written as

a=ka,

ah M (@)j)(B)—Bh ?(ay,(B)

S)(ky= ——= St
ah{" (@) (B)~Bh (@) (B)

(1.2)

wherej, £, and 4 (¥ are the familiar spherical Bessel and
Hankel functions and the primes stand for derivatives with
respect to their arguments. By denoting, as usual,

A=I41 (1.3)

and with the notation introduced by Nussenzveig,’

(z1=J,@/7,@, (1.42)
(1z1=HY@/HP @), (1.4b)
[221=H@P@/HP (), (1.40)

for the logarithmic derivatives of the cylindrical Bessel and
Hankel functions, Eq. (1.2) can be put in the form

HP@ [2a]1-NI{F]

: (1.5)
HP @) [la]-N[B]

S/(k)= -

The Debye expansion of the S matrix arises when reflec-
tion and transmission coefficients on the interior (index 1)
and exterior (index 2) sides of the spherical surface of radius
a are defined according to

R Ual=N[BY o [2a]-N[25]
! [la]-N[281 7 [la]-N{28]’

(1.6)

w=14+R,, Tu=1+4+R,, (L7

“'This work has been supported by Instituto de Estudios Nucleares.
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and used in Eq. (1.5). We obtain

S(k)=[HP )/ HP (@) ]
X{ R+ T [HPBYHSP (B))

X (1=p)'T}, (1.8)
where
p=R.HPPBHPB). (1.9)

Expanding (1—p)™ in a geometrical series, we arrive finally
to the Debye expansion of the S matrix

S(k)=[HP(a)/H {())

X [Rm% (HPGYHOEN S o T,
p=1

(1.10)

Each term of this expansion has a very clear physical inter-
pretation in terms of multiple reflections of the wave in the
interior of the sphere.'

The precedent formulation can be applied equally well
to the nonrelativistic quantum mechanical scattering of a
particle by a potential or of two particles interacting via a
rectangular potential well or barrier,

V(r)=V,0(a—r), (1.11)
if one identifies the refraction index with
N=(1-2mV/#k?)"?, (1.12)

m being the mass of the particle or the reduced mass of the
system of two particles.

The Debye expansion method has been extended by
Khare and Nussenzveig? to electromagnetic scattering. As
suggested by Nussenzveig,' the Debye expansion can also be
applied to problems of interest in nuclear physics, such as
scattering of hadrons by nuclei or scattering between heavy
ions. This has been done recently by Anni, Renna, and
Taffara.’ Also, in a different context, the Debye expansion
has been used to explain the occurrence of resonances in a
velocity-dependent potential.*
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The usefulness of Eq. (1.10) lies in the possibility of
approximating the S matrix by the first terms of its expan-
sion, that is, in the convergence of the Debye expansion.
Such convergence has been proven by Nussenveig' in the
case of a real refraction index (a real potential in the nuclear
case) and conjectured by Anni, Renna, and Taffara’ in the
case of a complex refraction index (a complex potential in
the corresponding nuclear case). Since the optical potentials
in nuclear physics are necessarily complex, it has seemed to
us worthwhile to analyze the convergence of the Debye ex-
pansion in the case of ¥ complex. This is the purpose of this
paper. In what foliows we investigate, for different energies
of the incident wave, the regions of the complex ¥ plane for
which

lpl<1

and, therefore, the Debye expansion is convergent. We start
with consideration, in Sec, 2, of particular regions of the N
plane, namely the real and imaginary axes and the region far
from the origin. Section 3 is devoted to the analysis of Eq.
(1.13) in the case of very small and very high energies. In Sec.
4, numerical results corresponding to intermediate energies
are reported. Finally, in Sec, 5, a discussion of the results is
carried out.

(1.13)

It is interesting to notice that, in view of the relations
(see Ref. 5, Eq. 9.1.39)

H 'z exp{mi))= —exp| —Ami| H P(2), (1.14a)

H Pz exp{ —7i})= —exp{Awi| H (2), (1.145)
one can write

—z[I(=2)]=2[2z], —z[2(—2)]=2{1z], (1.15)
and hence, for 4 half-integer (/ physical),

pUk,—N)Y=1/p(Lk;N). (1.16)

This reflection property tells us that if Eq. (1.13) holds at a
given point, , of the N plane, for the same angular momen-
tum and energy we have |p|> 1 at the symmetrical point,

— N, with respect to the origin. So, it suffices in our discus-
sion to consider only the right half of the N plane.

In the subsequent analysis, besides Eq. (1.15), the
relations

z[1z] =2[22), z[2z] =z[1Z], A real, (1.17)
obtained from (see Ref, 5, Eq. 9.1.40)
H @=H3@), HP@Q=H"E), A real,
(1.18)

will prove to be useful.

2. SPECIAL VALUES OF THE REFRACTION
INDEX

The convergence of the Debye expansion in the case of
real NV has already been considered by Nussenzveig. In fact,
he has proven' that Eq. (1.13) holds at all energies not only
for physical values of the angular momentum, but for any
real value of 4. In this section we shall discuss the two cases
of pure imaginary N and of [NV|> 1.

127 J. Math. Phys., Vol. 20, No. 1, January 1979

A. Positive pure imaginary refraction index

For a pure imaginary refraction index, the Hankel func-
tion H P(B) corresponding to odd angular momentum
(A = odd + 1) vanishes at a certain energy,® making singular
the quotient H $’(8)/H P(B)and the denominator of R,,.
The form Eq. (1.9) is not suited for this case, as it would
appear undetermined at such energy. Instead, we prefer to
use the equivalent expression.

p'=1-21,(8)/H(B)

4

- ) 2.1
7[H @)1 {alla]l -8 181

obtained from Eq. (1.9) by replacing (see Ref. 5, Eq. 9.1.4)
HP(2)=21,(0)~H{ () 2.2

and recalling the value of the Wronskian of the two Hankel
functions (see Ref. 5, Eq. 9.1.17),

W {H (z),H P(2)) = ~di/7z. 2.3)

Let us start with the particular case of very low ener-
gies, that is,

a—0, |B—0. (2.4)

We assume A > 1, the case 4 =1 being considered in Sec. 4.
From the ascending series expansions of the Bessel and Han-
kel functions (see Ref. 5, Eq. 9.1.10) it is easy to obtain,
retaining only dominant terms,

J,@=/D*/FA+1), |4—0 (2.5)
H{"@)~-HQ()

~(—i/mC(A)z/2) *, 0. (2.6)

Replacing Eqs. (2.5) and (2.6) in Eq. (2.1), it becomes

Pl =2mi B/ [FA) 17

X(V/A=2/{alla} =B 18 1)) 2.7

The convergence of the Debye expansion, Eq. (1.13),
requires

iB/2)*Re(1/4—2/{a[1a] —B{1A]}) <O. (2.8)

Being A=/+1 (I=1,2,3,.-), we can use (see Ref. 5, Egs.
10.1.1, 10.1.16 and 10.1.17)

H' P (2)=Q2/m)" ~' ' 7%expf iz}

X i A n)(—2iz) ", 2.9)

n=0
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H&z ) (z)= (2/17.)1/21- {+ 1Z—l/zexp{ —iz}

X i 1 .n)Qiz) ", (2.10)
n=0
with
A.n)={+n)l/nl(l—n), (2.11)
to obtain the exact expressions
zZ[1z]=~1+1iz
+ 5 (—n)hn) (~2i) "
n=0
! —1
x(z An)(—2iz) " ) , 2.12)
n=0
2[2z]=—1—-1iz
+ 3 (CmAm i) "
n=0
x ( i (A,m)(2iz) " )” " 2.13)

In the case under consideration, we can approximate

Refalla] -Bl1Bl} ~a’(1 +N[)/(21-1), a —0, (2.14a)
Im{afla]-pBl18]} =Im{a[la]}
~a* /[RI-DN];, a-—0. (2.14b)

Equation (2.14a) shows that the last factor in the left-hand
side of Eq. (2.8) is negative independently of the value of NV.
The condition Eq. (2.8) becomes equivalent to

#1710, (2.15)

which is satisfied for odd values of /. So, we can conclude that
in the case of positive pure imaginary refraction index, at low
energies, the Debye expansion for an odd /-wave converges,
no matter which value Im/ takes. For even /-waves we find
|pl> 1 and the expansion becomes nonconvergent.

Now, let us examine the possibility of having | p|=1 for
IN| — O at intermediate values of the energy. Since |3, — 0,
Eq. (2.7) remains still valid. The condition | p|=1 becomes
approximately equivalent to

Re(1/4-2/{a[la]—pB151})=0.
From Eq. (2.12), it is evident that, to the order of approxima-

tion retained, we can replace S[1/] in Eq. (2.16) by its ap-
proximate value, —A. Then Eq. (2.16) reduces to

e la]=A.

By replacing the real and imaginary parts of afla] by their
exact expressions,* Eq. (2.17) can be put in the form

d Q21— m2!-2n)
0o n{(—m']?

(2.16)

2.17)

(4s)" !
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Lo Ql=mii=2n) .,

X n:On A —n)]? (4" (2.18)
where

s=a (2.19)

represents an adimensional energy parameter. It is immedi-
ate to check that Eq. (2.18) has only one solution for positive
s.

Finally, let us consider what happens when the energy
reaches very high values. More precisely, let us study the
case @ — co, |3 being finite. From Egs. (2.12) and (2.13) we
obtain the approximate expressions

z{lz}~iz—1, lH— o0, (2.20)

2[2z]~ —iz—1, H— oo, 2.21)
The first of these expressions, replaced for ala] in

Ri=_ & [la]-B[18] 2.22)

alla]-B[28)
allows us to conclude that R,,— —1 as the energy increases.
If we are interested in the intersection of the line |p| =1 in
the complex N plane with the positive imaginary axis, we
ought to search for imaginary values of 3 satisfying

[H'D@BYH B =1, (2.23)
which can be written, using Egs. (2.9) and (2.10), in the form

exp{ —2pf= i(/l,n)(*zy) !

no 0

! 1
x (z (m)(29) ) , (2.24)
n 0
or, equivalently,
!
expl =2} =Y (4,l—m)}(—2p)"
n =0
! i
x (z (/Ll—n)(?-y)”) , (225)
n 0
where we have denoted
B=1y, (2.26)

y being positive. It is easy to see that Eq. (2.25) has only one
solution for odd / and no solution for even /.

The present results allow us to draw conclusions about
the convergence of the Debye expansion for positive pure
imaginary refraction index, as the energy varies from zero to
infinity. For /=1,3,5,..., the expansion is convergent at zero
energy for all values of ImN. This result remains valid, as the
energy increases, until the value given by the solutio nof Eq.
(2.18) is reached. Then, the expansion is convergent for Im¥
above a point which, starting from the origin at the energy
quoted, goes up as the energy increases, stops and reverses its
motion, approaching asymptotically the origin as the energy
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becomes infinite, in such a manner that aIm/ tends to the
constant given by the solution of Eq. (2.25). For /=2,4,6,...,
the expansion is nonconvergent at zero energy for any ImJV.
As the energy increases, the expansion becomes convergent
for ImN above a point that, coming from infinity, goes to-
wards the origin and reaches it for an energy given by the
solution of Eq. (2.18). For higher energies, the expansion is
convergent for all values of ImN.

B. Very high complex refraction index

In the case | N | — oo it turns out |8]— o0 and we can
use Eqgs. (2.20) and (2.21), for B[15] and B[25] in Eq. (2.22),
to obtain

_afla)—-iB+}

1 ) —00. 2.27)
l alla)+if+1 1Bl
It is clear that

R,~1 for |N|->wx. (2.28)

The convergence of the Debye expansion is in this case deter-
mined mainly by the quotient of the two Hankel functions,
which can be approximate in the form

|[HP/HP | ~exp{ —2aImN }, |B|— . (2.29)

In view of Egs. (2.28) and (2.29), we can conclude that the
line

lpl=1,

delimiting the convergence region, tends asymptotically to

the real axis as ReN — + . It is not difficult to see that the
line| p|=1is tangent to the real axis from below. It is evident
from Eq. (2.29) that, far from the real axis, the Debye expan-
sion is convergent in the first quadrant and nonconvergent in
the fourth one. The separation line between the convergence
and nonconvergence regions must lie, for ReN — + oo, be-
low the real axis, since the entire real positive axis belongs to
the convergence region.

(2.30)

In conclusion, for points N far from the origin, the
Debye expansion is convergent in the first quadrant. The
rapidity of the convergence can be inferred from Egs. (2.28)
and (2.29).

3. EXTREME VALUES OF THE ENERGY

In this section we consider the convergence of the
Debye expasion for any complex N in the two limiting cases
of very low and very high energies.

A. Case of very low energy

Let us suppose that @ — 0 and, hence, |f| — 0. We can
use approximate expressions for the Bessel and Hankel func-
tions appearing in the definition of p, Eq. (1.9). It is conve-
nient, however, to put o in the form

_27.06)
HP @)

p=1

4i
+ )
T (HP ) (e la1-B(281]}

3.1
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obtained from Eq. (1.9) similary to Eq. (2.1). Let us assume
A > 1, the case 4 =1 being considered in Sec. 4. Replacing
Eqgs. (2.5) and (2.6) in Eq. (3.1), it becomes

p~1+2mi[ (A)]%B/2)4(1/A—2/{a[la]—B[28]}). (3.2)

Bearing in mind Eqgs. (2.12) and (2.13), we can approximate
further Eq. (3.2) to obtain

p~1+2mi(d— DIF )@/ NP /(1-N?Y). (3.3

It is evident from Eq. (3.3) that the convergence at low
energies is very slow ((p|~1) and requires

Re[—iN*/(1—NY)] <O, (34
which implies

Im[N*/(1—N?)] <0, 3.5)
or, equivalently,

Im(NV** — NN ~2) < 0. (3.6)
Denoting

M=|N, O=argN\, 3.7
the condition Eq. (3.6) can be written in the form
F(M,0) = sin(2A6) — M?sin[(24 —2)6] <0. (3.8)

In the analysis of Eq. (3.8) it is convenient to consider in the
first quadrant of the V plane 2/ regions Aq, q=1,2,..,2], de-
fined in the form

A4,y v (p—Dm/2A-2)<O <pr/2A, p=12,.1,

(3.9a)
Ay pr/2A <O <pr/(2A-2), p=1.2,.,], (3.9b)
It is then obvious to check the following resuits:

(1) region 4 ,, _y:
(a) podd; F(M,B) <0

for M? > sin(2A6)/5in[(21 —2)6],  (3.10a)
(b) p even; F(M,0) <0

for M? < sin(2A16)/sin[(24 —2)68],  (3.10b)
(ii) region 4, ™
(a)podd; FIM,0)<0 forall M, (3.11a)
(b) peven; F(M,0)>0 forall M. (3.11b)

Asfaras F (M, )is an odd function of , it is evident that F
presents in the fourth quadrant the opposite sign of that in
the complex conjugate quadrant. For a better visualization
of the results, Eqgs. (3.10) and (3.11), we have represented
them in Fig. 1 for the particular case /=4.

Of course, our precedent analysis is valid only for points
not far from the origin. Otherwise, the assumption |§ — 0
should not be valid and we could not make use of Eqgs. (2.5)
and (2.6). Far from the origin, the analysis made in Sec. 2 B
would stand.

B. Case of very high energy

Now, let us assume a@ — «. Of course, we have also
| — o0, and the approximate expressions Egs. (2.20),
(2.21), and (2.29) can be used. We so obtain

A. Cruz and J. Sesma 129



FIG. 1. Low energy limit of the convergence and nonconvergence regions of
the Debye expansion for scattering of a scalar wave, of angular momentum
[=4, by a homogeneous sphere of complex refraction index N. The expan-
sion is nonconvergent in the shadowed regions. The curves delimiting the

convergence regions become tangent to the dashed straight lines. The real

axis belongs to the convergence region.

| pl~exp(—2aImN (1 =N )/(1+N). (3.12)

At high energy, the Debye expansion becomes conver-
gent in all the first quadrant and, in the fourth quadrant,
above a line which starts at the origin, goes right and down-
wards, presents a minimum at ReN~1 and goes right and
upwards, to be asymptotically tangent to the real axis from
below.

4. INTERMEDIATE ENERGIES

At intermediate energies we cannot use aproximate ex-
pressions for the Bessel and Hankel functions, and a discus-
sion of Eq. (1.13) becomes difficult. In the case /=0, howev-
er, such functions have a very simple form, which allows us
to write

p=exp(ZiBY1—-N)/(1+N), @1
and, therefore,
|pl=exp(—2aIm¥ (1 -N)/(1+N). 4.2)

The convergence region in the case /=0 shows the aspect we
have just described above, at the end of the precedent sec-
tion, in the case of very high energy.

For /5£0, we have done a numerical analysis of Eq.
(1.13). Our results are reported in Fig. 2. We can see in there
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FIG. 2. Convergence and nonconvergence {(shadowed) regions for waves of
angular momenta /=1,2,3, and for different values of the energy parameter
s=0.1, 1.0, 10.0, 100.0. The divisions of the real and imaginary axes corre-
spond to the unit.

the evolution of the convergence region, as the energy in-
creases, from the situation described in Sec. 3 A, to that of
3 B: The loops delimiting the convergence region reduce
their size. The behavior on the imaginary axis described in
Sec. 2 A, 1s now made clear by the counterclockwise rotation
of the loops as the energy increases.

5. DISCUSSION

As pointed out in Sec. 1, one of the most interesting
applications of the Debye expansion is in the study of nucle-
us-nucleus and hadron-nucleus collisions. Our analysis of
the convergence of such expansion has been limited to a
(complex) square well potential. In fact, the Debye expan-
sion has not yet been generalized to potential shapes differ-
ent from the square well, although some of the conclusions of
our precedent analysis would remain valid in the case of
more realistic potentials, such as Saxon~Woods potentials.

In the case of low energies (more precisely, in the case of
low values of the external wave number times the range pa-
rameter), the convergence of the Debye expansion becomes
very sensitive to the precise values of the parameters of the
potential. Furthermore, since | pj=1 in all the ¥ plane, the
convergence would result very slow and many terms of the
expansion should be retained in order to obtain an accept-
able accuracy.
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At intermediate energies, the Debye expansion be-
comes rapidly convergent for strongly absorptive (ImN > 0)
potentials and divergent for strongly emissive (ImN < 0) po-
tentials, as it should be expected. For weakly absorptive or
emissive potentials, the convergence depends on the particu-
lar values of the parameters involved.

At high energies, the expansion is convergent for ab-
sorptive potentials and divergent for emissive potentials.
The rapidity of the convergence can be conjectured from the
approximate relation

| o~ exp(— 2alm(AY). (5.1)

where a represents the product of the external wave number
times the range parameter of the potential and (N stands
for an average value of the refraction index.

The extension of our study of the convergence of the
Debye expansion to potentials with a Coulomb tail would
present, in principle, no difficulty. It would suffice to replace
the Whittaker functions for the Hankel functions in the Cou-
lombian region.
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Relativistic scattering of model particles
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Relativistic scattering of particles belonging to an irreducible representation (irrep) of the 1l-parameter
Weyl Lie algebra w is studied. The irrep of w is realized on a manifold R 3XT where T = [0,7]. From
the corresponding wavefunctions a local relativistic field is constructed which is coupled to itself in such a
way that w is respected. Scattering is studied in the Born approximation.

INTRODUCTION

If hadrons are composed of constituents then hadron—
hadron interactions is a manybody problem for which we do
not know the fundamental interaction. However, even
knowledge of this fundamental interaction between the con-
stituents might not be of much use in predicting the outcome
of hadron scattering experiments at present, due to compu-
tational difficulties as in QCD. In view of this it might be
useful to find other appoaches to the problem. We could,
e.g., consider the fundamental interaction to create in the
first place the bound states of the system, i.e., essentially
determine the mass spectrum and then secondly study scat-
tering of these bound states on each other. Along these lines
one could then first try to solve the bound state problem, by
using a mass spectrum generating relativistic Lie algebra g
(=containing the Poincaré Lie algebra) and loock for a Poin-
caré partially integrable irreducible representation of g with
nontrivial mass content. Over the carrier space of such an
irreducible representation (irrep) we could then construct a
Fock space and an associated free field. This field should
then be coupled to itself in such a way that the interaction
respects the Lie algebra g so that g can be realized as a charge
algebra in terms of the interacting field. It could then be
hoped that already low order perturbation theory would give
relatively detailed information about cross sections, particle
widths, resonances, etc.

This paper is devoted to a realization of this program
for a simple model, hence the particles are called model par-
ticles. We will study scattering of particles belonging to an
irreducible representation of the 11-parameter Weyl Lie al-
gebra v, Here v acts as a spectrum-generating Poincaré inte-
grable Lie algebra'? and an irreducible representation of v
corresponds quantum mechanically to an elementary object.
The subspaces in the decomposition of such an irrep of v into
irreps of the Poincaré group corresponds to different types of
elementary particles. The irreps of v are realized on a Hil-
bert space E of functions over a four-dimensional manifold
R T, where T=[0,7]. T represents the manifold for the
inner structure of the particle and to each vibrational mode
of the object with “length” 7 there corresponds a particle
with mass mok (where k=1,2,3-..). This representation can
be mapped into a Hilbert space 7#°(x°) endowed with a time
parameter x°. The functions in 5#7°(x°) are the positive energy
solutions to the wave equation (_— m23)p (x,g)=0 (xR *,
g<T). In the Fock space I'(7(x°)) over 77 (x°) we can define
fields @(x,q) fulfilling a field equation of the same form as
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the wave equation in 5#°(x°). This field equation and the
Fock space representation of v can be derived from a La-
grangian .7, by applying a variational principle on the cor-
responding action.

We then introduce interaction by adding an extra term
to the action integral. This term can be chosen in such a way
that the (local) Weyl algebra symmetry is preserved. Starting
from the action, we can set up expressions for the eleven
generators of the Weyl algebra satisfying the appropriate
commutation relations. In this model scale invariance is
broken intrinsically since the dilatation generator is not inte-
grable to an operator for finite dilatations.

Finally we set up the perturbation expansion for the §
matrix and give the corresponding Feynman rules. As an
example we apply this technique on the problem of two-body
scattering and calculate the S-matrix element in lowest order
Born approximation and then we determine explicitly the
high energy behavior for two different interaction terms.

THE “BOUND-STATE PROBLEM”
The Weyl Lie algebra v has the structure
w=>"a20(3,1)) ¢ R.. 2.1
Iv is spanned by the Poincaré generators P and M*” and the
dilatation generator D. Besides the ordinary commutation
relations between P* and M*” these generators satisfy
[D.P)=—iP", (2.2a)
[D,M*]=0. (2.2b)
Let E be the Hilbert space L X(R *,d °x) ® L (T,dg), where
T=[0,7), and let a function g(¥,g)<E have the Fourier
resolution

8(x.q)
=3 J d'p ) ¥i(m/2)" e P% sinkg & ()
k=1 JR®
(2.3)

The operator V=—4 — mf,a; is positive on the subspace
S(R*) @ C(T)2in E, where welet C(T')f . .. denote a set of
k times continuously differentiable functions on T such that
their / th, mth, etc., derivatives vanish at g=0and g=7.
Then for g(%,9)e. (R *) ® C(T); we can define a positive op-
erator V' via spectrality, i.e.,
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(V I/Zg)(f’q) — Z 4( d 3p (277,)—3/261‘5)? sinkq
k
X (@ +mgk )8, (P)- (2.4)

Similarly we can define the operator ¥ "> onall of E'sinceitis
bounded.

.....

up a representation of v as follows:

Pg(x,q)="V"g(x,q9), (2.52)
Py(X,q)= —iV8(%.9), (2.5b)
Jg(X,q)= —i¥X 7g(%.9), (2.5¢)
Kg(x.q)=(— V"% — 4V 7)g(%,9), (2.5d)
Dg(%,q) = Yi(X + /X +43,+3 9)g(%.q), (2.5¢)

where J,= — e, M * and K,= M,
Theorem 1: (a) The operators P, M** and D defined
above are symmetric on S.

(b) P*, M**, and D map S into subspaces on which they
all are symmetric.

(c) The commutation relation of tv are fulfilled on S.

Proof: (a) P° and K are symmetric on S (R*) o (1)
since V'is positive on that domain. P and J are symmetric on
(R @ L ¥T,dg) and D is symmetric on ¥ (R *) ® C(T),.
Hence we conclude that P, M**, and D are symmetric on S.

(b) P and M** map (R *) @ C(T)§,.4... into itself and
D maps ' (R*)® C(T)§, into (R ) C(T) . Hence
P MY and D map S into subspaces of £ on which they all
are symmetric.

(c) It is trivial to verify that the commutation relations
of v are fulfilled on §.

Definition 1:; A representation of v is “weakly” Schur
irreducible if every bounded operator A4 that commutes
strongly with 7 and M*" and weakly with D is a multiple of
the identity operator.

Theorem 2: The representation of v defined in (2.5a)-
(2.5e) is “weakly” Schur irreducible.

Proof: Consider a bounded operator 4 which commutes
strongly with 7 and M*". A4 is then a multiple of the identity
on every eigenspace of the mass’ operator
M?*=P P"=—m{d,. Hence A=2[ a,l,, where I, projects
on the eigenspace on which M >*=m2k *. Assume now that 4
commutes weakly with D, i.e.,

(,(4D-DA)9) =0, for all f,geS. (2.6)

Inserting the Fourier expansions (2.4) of fand g and using
the definition (2.5e) for D, we obtain

S (ap—a) f &p Fr (D F ug 1(5)=0, (2.72)

F,, =2/7J. sinkg 4i(qd , +d,9) sinlg dg
0
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(=1)*+ 1k
| A0 for kA

0, for k=1

(2.7b)

(2.7) implies that a,=a, for all k and / and hence 4 is a
multiple of the identity and the theorem is proved. Q.E.D.

We have thus found an irrep of w in £ with mass spec-
trum m,,2m,,3m,,---. This mas spectrum corresponds to the
choice g(x,0)=g(x,7) =0 of the boundary conditions in this
Sturm-Liouville problem. Other choices are possible, but
this one corresponds to the “reflecting walls” of an infinite
square-well potential which we prefer on physical grounds
and also because of simplicity.

Next we shall set up an equivalent representation of v in
a Hilbert space #(x°). With each vector g(x,q)eE we can
associate a new vector
P(x,g)=G (x)g(x,q) =272V Ve~ " "g(x,q).
(2.8)
The operator G (x°) can be extended to all of £ since it is

bounded relative the norm in E. Then we define a new scalar
product for the new vectors (2.8),

(@920 =(8182)- (2.9)

The set (2.8) of functions and the scalar product (2.9) defines
a new Hilbert space #7(x°) and G (x°) is an isometric trans-
formation from E to 7#7(x°). Now let ¢(x,9)eS (x%) =G (x°)S.
We can then set up the following representation of tv on .S (x°)
in #7(x") which is equivalent to the representation (2.5a)-
(2.5¢) of win E:
Pp (x,9)=G X)WV gX.g)=V""p (x,q)=idp (x.9),
(2.10a)

Py (x,9)=G (x)(—i7)g(X,9)= —i/@ (x.g), (2.10b)
Jp (x,g)=G (XN —iX X V)g(%,g) = —ix X V@ (x,9),

(2.10c)
Ko (x,9)=G (x)(V "X — LV "7)g(%.9)
=(—ZV"—ix'7)p (x,9)
= —i(x"7 +X)p (x,9), (2.10d)

Dp (x,9)=G (xX"V4i(XV + VX +93,+0,9)8(%.9)
=1i(—2ix°V "+ 37 47X +43,+3 4 1)
X @ (x,9)
=i(x"d,+903,+ ) (x.9).
(2.10e)

Because of the third equality of (2.10a) we find that the func-
tions @(x,q)e#"(x°) are the positive energy solutions to the
generalized Klein—-Gordon equation

-m32e (x.g9)=0. @.11)

We also find that the scalar product (2.9) in #°(x°) can be
expressed as a generalized Klein~Gordon scalar product
since

(Ps@2)=(81:8) = f 818:d°x dg
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___f ( e —ix“V’”g]) *e r—ix"V"’gzdgx dq

= f @ i Goprd’x dg. (2.12)

The construction of the w-representation in E instead of the
more natural one in 7#"(x°) has been done since it is only by
direct or indirect reference to the representation in E that
Theorems 1 and 2 can be proven.

3. FIELD THEORY

In Sec. 2 weset up (equivalent) representations of win E
and .77 (x°). In this section we shall construct the analog re-
presentation in the Fock space I'(E') over E. We then show
that the representation in I'(E) is equivalent to a representa-
tion derived from a Lagrangian free-field theory.

We start by defining the symmetric Fock space I'(E)
over E.*°

INEY=E“oEVeEY® .. (3.1a)
where
EY=0(EQE®E® )=0(E*"), (3.1b)

and where o is the symmetrizer. We let /(£ ) have the natu-
ral scalar product induced by the scalar product in E.

Let|p,k)> denote a one-particle state with momentum j
and mass m.k and with the following normalization

G\ F K> =8F =) (32)

Let a," (7) be the creation operator of such a state and a,(p)
the corresponding annihilation operator. Then

(@, Phai @) =8G—F)is- (3.3)
Next let | X,g)> denote the state of a particle localized at (x,q)
and let (X,q) and ¥(X,q) be the corresponding creation and
annihilation operators. We get

HEP= J d’p 2wy V¥ (w/2) e sinkq a, (D)

k
(3.42)

and

[W(x.9).¥' (X g =8 —x)6(g—q). (3.4b)

We can also introduce smeared field operators. For geF let

¢<g>=fd’x dg g*(FgIE9), (3.4%2)
and then
(¥(g) ¥ (g)]=(8::8.), (3.4'b)

where ( ;) is the scalar product in E.

In Sec. 2 we defined operators P“ M*, and DonSin E,
(2.5a)~(2.5¢), which according to Theorem 1 spans a repre-
sentation of 'o. We now set up the corresponding lifted oper-
ators d I'(PY), dI" (M*") and dI"'(D ) on the dense subspace
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I'(S)C I (E). Letting | a>el'(S), we obtain

dr (7)) a>:f dx dg ¥’V a, (3.5a)
dr @Y ay= [ dx dg v (~iFwha, (3.5b)
dr (M a>= J d*x dg P (—ix X V)Y ), (3.5¢)

dr () ay= f dx dg ¥(— V- T ad,
(3.5d)

dr®) a}zfd-‘x dg & -’2—

X(X+Vx+9d,+3 ,9ad. (3.5¢)

Theorem 3: The operators (3.5a)-(3.5¢) are exactly the
operators, (2.5a)~(2.5e) lifted to Fock space.

Proof: The operators (3.5a)~(3.5¢) do not change parti-
cle number. Hence it is enough to consider their properties
on the n-particle sectors S C E‘. Furthermore, we can
limit ourselves to the set of vectors | a>=9"(g))-¥(g,)| 0>
with g&S*" since these span $™. Then let
| B> =y (f) - (f,) 0> with f,€E". Then using (3.4b) and

Vi(x,q)6'(x—x)5(qg—q')

=V (x",q")6(x —x")0(g—q'), (3.6)
we obtain
BlArPyad=> (fi;V"7g,)Xfi:g,)(fi:8;)>
perm
3.7

where the sum is over permutations of i,,...,i, and ji,...,j,,.
Hence it is obvious that dI" (P°) is exactly the operator P°in
(2.5a)lifted to the Fock space /" (E'). The other operators can
be treated in a similar way and it is obvious that the operators
(3.52)—(3.5¢) fulfill a theorem corresponding to theorem 1.
Q.ED.

The next step in our construction will be to set up a
Lagrangian free-field theory which in form will be very close
to the representation (2.10a)—(2.10e) of v in #7(x°). We in-
troduce fields @(x,q) as follows:

D(x,9) =P (x,q)+ P (x,q)

=G (xX)Uxg)+ G (—x)(%.q), (3.82)
so that
@ (xg)=3 [ dp @mym
k
X expl—i(p* +m k) *x° + ipX)
X +m k) *a,(p) (3.8b)
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and

P (x,q)=[P"(x.9)]*. (3.8¢)

We also introduce conjugate fields 7(x,q)
T(x,g) =P (x,9)=7"(x,9)+ 7' (x,9)
= — V"G (xX)Y(x,q)+ iV '"*G (—x)(x,gX%3.9)

The fields @ and 7 fulfill canonical commutation relations
(CCR)

[P(x°,5%,9),m(x*,X' ,q)] = —i6(X —X)6(g—q'),
and the fields @(x,q) satisfy a generalized Klein—-Gordon
field equation of the same form as the wave equation (2.11) in
H(x),

U-m2 2P (x,9)=0.

This field equation can be derived via a variation principle
from an action integral

(3.10)

(3.11)

1[¢1:Jd“x dg Lo (3.12)
where
ZLo=30,Py —4m 3,9 ). (3.12b)

This action is locally invariant under v, i.e., it is invariant
under infinitesimal t-transformations but not necessarily
under finite w-transformations. Guided by Noether’s theo-
rem (which, however, is not valid here, at least not in the
usual formulation), we can set up the following representa-
tion of the generators of the Weyl algebra:

Pﬁ::fd’xdq Br+4(T2 ) +m (3,20,

(3.132)
P-Lz:fd’xdq m(— P :, (3.13b)
sz:J(deq (= XX)D -, (3.13¢)
K, =:Jd’xdq
X=X 4+ (TP Y +4m (3, DN
—x°7y P, (3.13d)

Do =i @xdg (¥ Ur+HTOY +m Y3, 271

+7(XT+ g, +)P} - (3.13¢)

We shall now prove that the operators (3.13a)—(3.13¢)
fulfill the commutation relations of v, first in a straightfor-
ward but formal way (Theorem 4), and then by explicitly and
in detail showing that the operators P%, M4*,and D in
(3.13a)—(3.13e) are identical to the operators dI" (P“),

dI" (M""), anddI' (D) in (3.5a)~(3.5¢) in I'(E ) (Theorem 5).
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Theorem 4: Assume that partial integrations can be per-
formed as often as needed and that outintegrated terms van-
ish. It can then be proven that P4 , M %", and D ; in (3.13a)-
(3.13¢), evaluated at the same time x°, fulfill the commuta-
tion relations of 1.

Proof: The normal ordering changes the operators only
by an additive constant. Hence we can neglect the normal
ordering in this proof since such constants do not affect the
commutators.

We start by considering the commutator between D, and @
at equal times. Using the CCR (3.10), we find

[D.(x%),® (x".%,9)]

= —if d’x' dg' 5Fx—5)8(q—q")
X [xm(x°.X,q) + (7 +q'9,+ )P (x5 .q")]

= —i(x",+q0,+ )P (x.9). (3.14)

Performing partial integration (cf. the assumption in the
theorem) and using the field equation (3.11), we obtain for
the commutator with 7

[DL(x"),m(x"%,9)]

= J dx' dg' [x(7' PG +m 3 ;3 ,;)
+7(E +4'9,+ )} (X —%)8(g—q)

= —ilx(7+m 2P+ ( 5+ ,q— ]

=—i(x*d,+¢d,+ . (3.15)

Utilizing (3.14) and (3.15), we can now consider the commu-
tation relation between D, and P :

[D.(x),P% (x)]

=—i J- d’x dglm(x*d,+q0d,+ )m
+ VPRI, +90,+ TP
+mid, P (x*3d,+4d, +2)d, 9]
= —ifdx3 dq
X [x°m (72 +m 0 DD+ xm( £ +49,, +7
+VP(ET 449, + VP +xm i P 7

+m3d P (EV+q0,+2)3,P]. (3.16)
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This last expression is simplified by partial integration. We
then obtain

(D, (x),PE(x)]

=—i fdlx dg
X[ =27 GP—x"m23 78 P+ ix" %/
XXV +49, + DT +x° YOV
+3ET 443, + VDY

+myd @3 T4+ ImYET+49,+3)(, PN
——i [ axdgl(— 3~ 4+ 300m
(=334 D@PY

+m~1—4+20, P

2

=—iP9(x°.

This is in accordance with (2.2a). In a similar manner it can
be proven that P4, M ¥, and D, fulfils also the other com-
mutation relations of 1. Q.E.D.

(3.17)

Theorem 5: The Lagrangian operators P#, M4, and
D, , defined in (3.13a)—(3.13e), are identical with the opera-
torsdI” (P*), dI" (M*”) and dI" (D), defined in (3.5a)—(3.5¢).

Proof: Let the vectors | a>eS™ and | £S5 be defined
by

|a>=4(8)¥@®,) [0 (3.18a)

|B>=4" () 4"(f,,) | 0D, (3.18b)

where g.£S5 and f£€S. As in the proof of Theorem 3 we shall
use (3.6) and similar formulas, like, e.g.,

[ V—l/z@)&j(f_f’)&(q_q’)
=(—XV 47V )EE-X)5g—q).

Now consider the matrix element (8| P |a). For the case
n=m we obtain

(3.6

BIPY =3 A,,(f:g):8) (3.192)
where
A4, =<0 Y(HP7Y(g)|0>. (3.19b)

To evaluate (3.19b), we insert the defining expressions (3.8a)
and (3.9) for @ and 7 which expresses these operators in
terms of ¢ and ¢*. The terms in P9 which are quadratic in ¢/
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or ¥ do not contribute in (3.19a) and (3.19b). After perform-
ing normal ordering we find

A4, =<O Jflejd}x dq J (VG (—xW VG (xO)¢

+(TG (—xWNTG (D)
+(8,G (—xW)I G () }dx; dg,

XJ ¥'g d’x, dg, ’0}. (3.20)

Using the commutation relation (3.4b) between ¢ and ¢, we
then obtain

Auzfd x, dg, d’xdgq, d x, d‘hf:(fh%)

X (PG (—x")) ¢, 8 (X ~X,)

X2gq,
X8(g:—q2) (VG (X)) 5,,6°( X, —X)

X(S(Qz-qz)‘*'"‘]gj(fh%) . 3.21)

We then use (3.6) to change variables in the differential oper-
ators in front of the § functions and perform the integral over
x; and q,.

A"J:dexl dql d }.Xx dq;f,*(fuql)

{ (V l/ZG (_xo).?“q‘( V 1/2(; (xo))i\,qx

X 8xX, —%.)8(q1 — g:) + -+ | §AX1.q:)- (3.22)

Next we perform partial integration in order to have the
differential operators operating on f; and g;instead of on the
& functions. Here we observe that since f,, eSwe then obtain

A=V "7g). (3.23)

The terms in P9 which are quadratic in ¢ are nonvan-
ishing, and are the only ones which are so, only when
m=n—2, which case we shall now consider. We shall make
use of the following formal identities:

P (x,9) =G (")Y(%.9)= UG (x)535,), (3.24a)
T, = —iV G (XWX, =t~ iV G (x)538,).

(3.24b)
Then
PP |a>= [ dx dgCO| Uf)-1, )
X i —iV'*G (x°)6§54)
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XY~ iV G (x)88,) + ]

XY@ ¢(g.) 0>

-3 f d’x dq (f,;8,)(f, &, )

perm
X [(=iV'*G (x)635,8;, )

X(—iV'2G (x°)838 ;8 ) ++}. (3.25)

To simplify this expression, we first perform partial in-
tegration in the scalar products between the braces in order
to move the differential operators from the & functions to the
functions g, The out-integrated terms vanish as before since
g£S. We then perform two integrations to eliminate the &
functions and obtain

BIPLlad>=3 (fig,)(f:, ;85 )

perm

X{(—iV"G(x)g] ;—iV"

G(xg; ) +-}. (3.26)

To simplify further, we integrate partially once more and,
after using the defining identity '=—A4—3}, we find that
the matrix element vanishes in the case m=n—2.

In the case m > n the only possibly nonvanishing terms
in {B | P? |a) are those which are quadratic in ¥ and they
contribute only when m =n+ 2. It can, however, be proven,
in a similar way as before, that the matrix element vanishes
also in this case.

Inserting (3.26) in (3.19a), we conclude that
B|PY|a>

{ S (Vg ) fig)-fg),  ifm=n,
=9 perm
0, if m=£n.

3.27)

Comparing (3.27) with (3.7) we find that P} =dI" (P°). The
other operator identities in the theorem can be proven in a
similar way. Q.E.D.

This theorem shows that the assumption in Theorem 4
are reasonable.

4. SCATTERING OF MODEL PARTICLES

In this section we introduce dynamics into the model by
adding an interaction term, which is locally invariant under
v, to the action (3.12a). Let (for simplicity)

L= —Aq"(y P NI;P )y P). (4.1a)
Then the contribution from (4.1a) to the action is t-invar-

iant if
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no=n|+n2+n3—%, forn 1,2’3=0,1,2,3,"‘ (4.lb)
since then the action has no scale dimension.

From the total action we derive the following field
equation for the interacting field:

C—m2?) & = —A (— 13 [q" =PI P |
— A (= 1) g I I D |
—A (=) [gedr D], (42)

Guided by Noether’s theorem applied on the total action, we
obtain the following generators:

PO=: fd’x dq[4m+ 5P Y+ imY3iP )

+Aq" I PO PINP ] -, (4.3a)
P, =;f d*x dg m(— )P, (4.3b)
J, = :J d’x dg m(— XX))P:, (4.3c)

IEL=:fd’xdq{-f[%ﬂ%(%ab)zwné(aqmz

+Aqm I PINPIND | —x°T 7P} -,

4.3d)
D= f dx dg{ (37 + 4T )+ 4mi6,P )’
L Ag S PIDI D |
L (ET i, + )P - 4.3

Theorem 6: Assume as in Theorem 4 that partial inte-
gration can be performed as often as needed and that outinte-
grated terms vanish. Then it can be proven that P%#, M4",
and D, as defined in (4.32)—(4.3¢) fulfill the commutation
relations of .

Proof: The theorem is proved in the same way as Theo-
rem 3.

Next we shall study scattering and calculate S-matrix
elements and cross sections. We recall that in the noninter-
acting case we have set up representations (3.5a)—(3.5¢) of i
onthesubspaceI'(§)C I (E).Here wenotethat the Poincaré
part of the representations are not integrable to a representa-
tion of the Poincaré group on these subspaces. However, on
I(R*) ® C(T')$,4.) C T (E) the Poincaré generators are in-
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tegrable. We shall now stay in the Poincaré integrable do-
mains and turn to the study of the S-matrix. Perturbation
theory can be brought over to this case with minor changes
and the deductions are very similar to those in the usual case
(see e.g., Ref. 7).

First we shall make some changes towards a more
manifest covariance. We change to a new normalization of
the states. Let

|BKD =0 (D) | Pk, (4.42)
and hence
KPKIP KD = D)@ —P )k (4.4b)

Let b / (p) and b, (P) be the creation and annihilation opera-
tors associated with these states. Then

b (p)=(@ (PN "a,(p),

where g,(p) is the annihilation operator of the state | p,k).
We also have

(Du)(x:q)::EJ a)d (;(277_)7—3/277.—112

k k

4.5)

Xexp| —iw , (px°+ipx|sinkgb  (p). (4.6)
This is in complete analogy with Ref. 4, Eq. (7:72a).

The following reduction formula can be derived (cf .,e.g.,
Ref. 7):

Lok sout | Gk nasing,

= [T | @#xidgdx; dg)

i=1 =1

~ _—

X )y ¢ sink g, —m2a?)
><<0 ’ T(d) (xl,q,)...) l 0>; t’——]‘}'1(2)8‘21)(277- —3/277-)/2

xe P sink g, 4N

The expression for the 7-functions will be

T(xhql;'“)

=0 TP (x559,)+)] 0>

_ 0| T(P(x1g1)--exp[ —i 2, dtH (P ,m,) D |0
O|TCexp[(—if=, dt H (P ) D |0>

(4.8)
Wick’s theorem will be as usual and only connected graphs
contribute. The propagator will be
(OI T(d’m(xu%)d)m(xzy‘h)) | )
=il p(x— X591 —942)
I 2 &
:(—25 4= Z Jd ‘p

T k=1

p—maki+ie

X e~ P %) sinkg, sinkg,. (4.9)
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All these formulas can be summarized in the following
Feynman rules:

(1) For each in-line write (27) 7%~ "™ sink g..
(2) For each out-line write 27 Va1 sinkg;.
(3) For each internal line write id ;.(x, —X2; ¢, —¢,).

(4) For each vertex write
(—iA)fd ‘xdq q"3,(-)3y ()35 ().

As an example we shall now consider two-body scatter-
ing and calculate S-matrix elements to second order. Let
Sff;‘z) = (P_asks; ﬁs;ka; out lihkl; p—z’kz; in) =I+ R (ﬁz) .
(4.10)

Then

7 4 X

=RPE)+R PO +R P (u)

=3 -2 7R (p)

perm
n&n,

XJ J dq dq'q™q'"d, sink.g
X dy sink,qc?g,' sink,g’

X 3% sinkiq' 02351 G (s 4.9)
+G (t:9,9)+G (u;9.9) 11, (4.11a)

where

<. sinkg sinkq’
Gz qq)=3 T (4.11b)

= oz—mk?

and where p,is the sum of the 4-momenta in the final state
and p, is the sum of initial 4-momenta. s, ¢, and u are the well-
known Mandelstam variables.

Using the following formulas?

i coskx :L 7 cosa.(n'—x) (O<x<m), (4.122)
S ki—ar 207 2a sinawm
i coskx _ 7cosha(r—x) 1 (O<x<m), (4.12b)
= kit a? 2« sinhamr 2a
we can sum up (4.11b) and obtain
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msin[(z/m2)"(m—q)] sin[(z/m})'"q’]
2m2(z/md)"? sin[(z/m2) ]

:

T—4q

f

2m}
msinh[(—z/m3)"(r—q)] sinh[(~2/m%)"q']

G(z9.9)=14

L 2mi(—z/m 32 sinh[(—z/m})" )

This expression is valid when 0 < ¢’ <¢ < 7. The values of
G (z; ¢,4") when 0 < g < ¢' < are obtained from the same ex-
pression but with ¢ and ¢’ interchanged.

Inserting (4.13) in (4.11), we obtain an expression for
R (¥ which can be useful, especially when one is interested in
asymptotic behavior, e.g., s— o0, #=0. In the low-energy re-
gion, it is, however, probably more convenient not to sum up
the propagator expressions but instead perform the g and ¢’
integrations first to obtain weights on the terms in the propa-
gator sum. We then get

R(ﬁZ) = Z { —2°7 8 (p ;P ) kZle_,k“,( Firr

perm

X(sﬁnlz T ;ékz +u~; = )] (4.142)

where
Froin =f dgq™d" sinkg 3" sinkg 37 sinksg.
0

(4.14b)

The integral (4.14b) cannot be explicity solved since n, is
always half-odd. One can express the integral in the incom-
plete I function (where the arguments will be imaginary),
but this does not help us very much. However, by expanding
F in an asymptotic series in powers of 1/k (for k— ) and
using Riemann and Lebesgue’s lemma one can derive the
asymptotic behavior of the weight functions F. For small k
some other approximation scheme must be used. In this way
one can, in models of this kind, calculate R }2’ and then scat-
tering cross sections. These quantities can then be compared
with the appropriate data to discriminate between different
models and different interactions.

Before we proceed, we observe that the propagator sum
in (4.14a) has single poles at z=m2k ? (k=1,2,3,) and
hence R § (s,1,u) has the same singularities. Accidentally in
this model there happens to be a pole exactly at the kinemati-
cal threshold in the s channel (i.e., s=4m?), which is awk-
ward. This is due to the fact that this model is chosen for
simplicity and will not occur in more refined models with
more realistic mass spectra, or by choosing other boundary
conditions for the mass spectrum problem which was treated
in Sec. 2. We shall now exemplify the discussion above,
studying the interaction with % ;= — Ag™"*® * and specializ-
ing to the case k, =k, =k,=k,=1. We shall only consider
the asymptotic behavior in the limit s— oo, #=0. (4.11a) with
(4.13) inserted will for this case be
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(z>0),

(z=0), (4.13)

(z <0).

IR 2
=271 26‘(pf~pi)2f f dg dg' q%q"""" sin’g sin’g’
D

(m—q')q
2m}

x(mw”’”é)“<7f~q>1 sin[(s/m)"g'

2mi(s/m3)"* sin[s/m2)*]

N 7sinh [ (—u/m2)"(r—g)] sinh|[( fu/mé)‘”q’])

2mi(—u/md)"”* sinh[(—u/m3)"*mr]

(4.15)

where D is the triangle in the g¢’ plane spanned by the points
(0,0), (,0), and (7). The s-depending term in (4.15) is best
expanded in an asymptotic series in powers of 52 (when
s— o0 ) by integrating partially and using Riemann and
Lebesgue’s lemma to neglect higher terms. The first term in
this expression will be proportional to s and the second
proportional to s~ cot(s/m 2)'*. The singularities in the sec-
ond term are due to the fact that the mass eigenstates are
sharp. In higher orders of perturbation theory we expect that
the singularities in the second, i.e., those in the factor
cot(s/m 2)'*, will vanish. Hence we assume that the second
term is nonleading.

Since we have chosen =0, the ¢ term will be propor-
tional to a constant.

Finally we consider the u term. There we approximate
sinh[(—u/m })""?a | with exp[(—u/m §)""a | when y— 0.
The resulting integrals cannot be calculated explicitly, but as
before we can expand them in an asymptotic series by using
partial integration. The leading term will be proportional to
a constant.

Since the leading terms in the r and v terms do not can-
cel, we obtain

R =constA8*(p,~p,) (s—>o,1=0), (4.16)

Hence, in this limit, we obtain for the scattering cross section

(4.17)

O =A*s.
As a second example we will study the interaction with
L, = ~/1q“”(8§¢ ). Then using (4.11) the R matrix will
be, if we specialize to k, =k, =k =k, =1,

R}iZ) — __2—5,”-—6/1264( Pr—p i)
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XJ J dq dg' g'"*q""* sin’q sin’q’
0 Jo

X [Gi(s; .9)+Gi(t; g,.9)+ G(u; 9,9') 1, (4.182)
where
n_ & k* sinkg sinkq’
Gi(z949)= ) —F———
R kz’l z—mk?
=(ms%0;+2)8(g—q)+2°G(z 9,9). (4.18b)

When the insert (4.18b) in (4.18a), the first term in
(4.18b) will only give rise to a constant since we can use the
well-known identity s+ ¢+ u =4m 3 to eliminate z. Then we
can calculate the other terms in a similar manner as in the
first example. We obtain that the leading term in the s term
will be proportional to s. The ¢ term will naturally be a con-
stant since we consider only t=0. Finally the u term will give
a term proportional to #? and this term will dominate the
behavior of the R matrix when s— o0 and =0, i.e.,

R =constd *8*(p,—p)u?, (4.19)
and the cross section will in this limit be
O =xconstd s’ (4.20)

4. DISCUSSION

We begin by clarifying some properties in the construc-
tion of our model. This model is based on local Weyl algebra
symmetry. This symmetry is local in the sense that the model
is based on a representation of the Weyl algebra that cannot
be exponentiated to a representation of the Weyl group. The
representation of w in #7(x°) was verified on the subspace
S (x°). This subspace is not invariant under the action of the
generators of v, for instance it is then not invariant under
time development. Hence, to detect the Weyl algebra sym-
metry of the system we must prepare a state [belonging to
S (x°)] and perform the measurements at the same time.
However, if we prepare the system in a state belonging to the
subspace . (R ) ® C(T)§.4.. in H#7(x°), we have full
Poincaré group symmetry since the system stays in this sub-
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space under Poincaré transformations since this subspace is
invariant under the action of the Poincaré generators.

One could argue that a model like the one discussed in
this paper is not possible, according to the no-go theorem of
Coleman-Mandula.’ They, however, only mention a case
like ours in a footnote and seem not to have observed the
possibility of two domains of definition, i.e., one on which
the nonintegrable Weyl algebra symmetry is realized and
another on which the Poincaré algebra is integrable. Indeed,
in our model the operator D, in (4.3¢e) does not satisfy
Lemma 1 of Ref. 9.

The model described in this paper is intended as a first
example of a new class of models, and we have primarily
been interested in showing that it is indeed possible to con-
struct such a model, in what sense it is possible, and how it
can be done.

Now that these problems have been clarified it can be
interesting to study the renormalizability of this type of
models, self-energy corrections, etc. It is also natural to ask
for a more realistic model. Such a model could, for instance,
involve a representation of 1w with an infinite multiplet of
fermions (with different masses) coupled to a representation
with an infinite multiplet of bosons (and to the electromag-
netic field etc.) Representations of this kind, which might be
adapted to a model of this kind, have indeed recently been
found by one of us."
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Summation of partial wave expansions in the scattering by
long range potentials. Il. Numerical applications®
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The numerical application of a sequence transformation method proposed in a previous work is considered
for the calculation of differential cross-sections corresponding to processes where long range interactions
are important. The advantages of the approach, as a summation algorithm for the partial wave expansion
of the scattering amplitude, are shown for the cases of scattering by the Lennard—Jones, repulsive
inverse square, and Coulombic potentials, and for the scattering of electrons by helium in the
intermediate energy range. Furthermore, the method proves to be a regularizing procedure for divergent

and oscillating partial wave expansions.

1. INTRODUCTION

Most of the interactions proposed to explain atomic and
molecular collision phenomena are of the long-range type.
Because of this fact, and depending on the particular process
and of the energy involved, there may be an important con-
tribution of the high order phase shifts in the partial wave
expansion of the scattering amplitude. When this is the case,
the latter is poorly convergent and can even be divergent or
oscillating.

There are various methods able to deal with some of
these situations, based on semiclassical approximations."'
However, an interesting approach is to formulate a general
calculation scheme, which avoids physical approximations
and intends to resume efficiently the available quantum in-
formation. With this purpose, the Punctual Padé Approxi-
mants were introduced in a previous paper.? A set of theo-
rems were proven regarding their asymptotic rate of
convergence, when summing the partial wave expansions of
the scattering amplitude and total cross section, correspond-
ing to long-range potentials. In this work, we deal with a
numerical study of the method, showing its practical impor-
tance. In Sec. 2 an outline is made of the approach, and its
particular use in the case of scattering problems is consid-
ered in Sec. 3. Numerical applications in the calculation of
elastic differential cross sections, corresponding to the
scattering by usual potentials in atomic and molecular colli-
sion processes, are described in Sec. 4, while the general dis-
cussion of the results is given in Sec. 5.

2. TRANSFORMATION OF SERIES AND
SEQUENCES

Consider the formal infinite sum
cn=%os, @.1)
r=0

and its associated infinite sequence of partial sums {C,_],

“Research supported by FINEP and FAPESP.

"Present address: Instituto de Fisica “Dr. J.A. Balseiro™ Centro Atémico,
8400 Bariloche, Argentina.

“Present address: Instituto de Fisica, UFF, Caixa Postal 296 24000 Niteroi,

RJ, Brasil.
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defined by
c.=Sb, 22
r=0

Clearly, (2.1) can be seen as a particular case of the power
series

C@zibg’ 2.3)

corresponding to z=1. Conversely, a formal expansion (2.3)
can be associated to any given infinite sequence {C,,}, by
defining b,=Coand b,,=C,,—C,,_, for m>1. This equiv-
alence allows one, in principle, to consider power series sum-
mation methods and procedures intended to approximate
the limiting values of sequences, without further distinction.

In order to deal with slowly convergent or divergent
sequences {C,,}, Shanks’ introduced the nth order E (C,,)
transformation. It is nonlinear, and defined as a formal gen-
eralization of Aitken’s A2-extrapolation formula, which cor-
responds to n=1. The 42 scheme can be interpreted geomet-
rically in a two-dimensional space as a linear extrapolation
involving the vectors (C,,,  ;, C,,, ;) with k=0,1. Like-
wise, it is possible to visualize E,(C,,) as an hyperplane ex-
trapolation in a (# + 1)-dimensional space, involving the vec-
tors (Co i Cosksvr v Conangn) With k=0,1,..n.%
Furthermore, it can be shown that these transformations are
simply related with the Padé approximations (PA) to the
series C (z2),’ by

E(C,)= [”’n+m]C(1)’ (2.4)

where [n,n +m] () is the Punctual Padé Approximant
(PPA) tothe powerseries (2.3), for z= 1. In this way, one has
a new interpretation for the approximants in the Padé table.
Its nth row, composed by the [n,n 4+ m] with fixed n, can be
viewed as an nth order Shanks’ transformation of the origi-
nal sequence [0,m]=C,,, i.e., of the first row the table.

Like PA, the E ,(C,,) are given in a compact form by
determinantal quotients, not readily computable for large 7.
To overcome this difficulty Wynn¢ proposed the € algorithm,
which allows for a recursive calculation of the £ ,( C ) . In
this scheme, a table of magnitudes € ™ is generated with the
recurrence formula
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. 1 1 -
evi=€eAD + (et —e My (2.5)
and the boundary values € ") =0, ™ =C,, . Then, one has
(m) _
6-2“:11 —En(cm)’

while the €§7), | are auxiliary quantities without any direct
meaning. By successive application of (2.5), and eliminating
the € Y, ;, Wynn found the so called “missing identity of
Frobenius™*’:

([n+Lm]—[n,m])" —([n,m]—[n— 1,m])"
=([nm+1}—[n,mly' —([n,m]—[n,m—1])",  (2.6)

which allows one to generate the Padé table recurrently,
starting with the boundary conditions [0,m]=C,,,
[—1,m]= 0, and [n,— 1]=0.

The main difficulty in the use of Eq. (2.5) and (2.6)
arises when reaching convergence, and comes from the pres-
ence of small differences in the denominators. A more stable
variant, from the computational point of view, is Bauer’s 5
algorithm.® It is nonlinear series transformation working
only with the coefficients b, of the series (2.1). In this
scheme, one constructs the table

7%
7

77(1) 7
ok 73

7% 7, 74 2.7)
m U

7 ‘ mnoo

T

by using the recurrence formulas

m A+l m m—+1
Nons1=N2n —Nan +7’2n71’

(2.8)
(5" =55 = (05 )+ (5,
with the initial values 75’ = « and 7' =b,,. Then,
m—1 2n4-1
E(C)=[nn+m]cq= AZ,O 7+ k; e
2.9

En+1(cm71) =[n+1,n+m ]C(l)

m—

1 X 2n4-2
> i+ > i
=0 k=1

k

where the first sum should be omitted when m =0, and
C_,=0.Itshould be noted that when the so-called forward
application of the algorithm is considered, it is sufficient to
store the last determined upper sloping diagonal of the ar-
ray (2.7). Furthermore, inspection of Egs. (2.8) and (2.9)
shows that when calculating [n,n 4+ m] ), the information
contained in the first m terms of the series C (1) (or of the
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first m members of the sequence {C, }) is resumed in
m—1 X m—1
Cn1~]=2n1:zbk’
K=o K=0

and the transformation E ,(C ) is actually operating
with the following terms. From the practical point of view,
this has the advantage that, by selecting appropriate values
for m, one can concentrate on using the transformation
technique over the terms of the series for which some kind
of monotonous or asymptotic behavior is present. In this
way, allowance is made for faster converging resulting
sequences.

3. SUMMATION OF PARTIAL WAVE
EXPANSIONS

In atomic and molecular collision processes the interac-
tions are frequently represented by central potentials with a
long-range behavior

A
Vo)~

a>—1, .1

where a is an integer and 4 a constant. Depending on the
particular process and of the energy involved, this deter-
mines that even very high angular momentum partial waves
will give an important contribution in the expansion of the
scattering amplitude

00

FfO)=—3 QL+1) [exp(2i§,)—1]P  (cosh),
2ik L=0
3.2)
as well as in that of the total elastic cross section
47 = .
= 2L+ 1) sin?é,, 33
0= 5 QL+ sins, (3.3)

where k is the magnitude of the wave vector, the §, are the
phase shifts, and the P, are the Legendre polynomials. Be-
cause of this fact, the expansions in Egs. (3.2) and (3.3) are
slowly convergent, and in certain physical problems it is nec-
essary to deal with thousands of phase shifts.” For these
cases, the exact computation of all the §; is prohibitive, and
different approximations are used for the high order ones."
However, the numerical work can still be considerable. An
example is the empirical determination of an interaction po-
tential. A usual method, is to start with a potential given by
an analytical expression dependent on parameters, to which
approximate values are given. Then the §, are calculated
and a comparison is set between the theoretical and experi-
mental cross sections. Repeating the procedure for different
values of the parameters, they are determined by “trial and
error,” by seeking an accurate fit. Since each step requires
the determination of the corresponding phase shifts, it is
clear that the numerical efforts will be very important when
many partial waves are necessary in the calculations.

In this work, the methods of Sec. 2 are applied for the
summation of expansion (3.2). In a precedent paper,' the
formal asymptotic convergence properties of the PPA were
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studied when dealing with this type of application. It was
shown that for a potential with a long-range tail, as that
given by Eq. (3.1), the PPA [n,n +m] to the expansions of
f(6)and Q, have, for fixed n and m—» o, the following as- ‘

ymptotic behaviors.

K(@a-2)n!
[n,n+m]0,~f(0)+ » (@>2), (3.4a)
/O (n+a—1IM!
(— D) VK (sing) 2V VN2 (g L IN— 1YV (sind ) 2BV 0! (3.4b)

(n.n +m]f(y)~f(8) +

Q27)Qa — D)lI(sing/2)>" + M o+ 2N+ 172

(a>0, 0<8<m, sind,, 0,
[n,n +m]f(1r) ~f ()

(- D" 'K (@+n—1in!
22n+l(a__ 1)!Mrz+2n

(@>1), (3.4¢)

K Qa)n

' 3.4d
2a (n+22)M>* a>1), (49

(nn+m]y~Q+

where K= 4k '1,, A, =(j+1)0—7n/4, M=m+1/2;
N=n/2 for even n, N=(n—1)/2 for odd n,
K'=274%*2I%, and

r
7 fora=0
2
—1m
I.,=4< (a—nli-l forevena >0,
all
A
£a__l); for odd «
L all

The conditions imposed on « in Egs. (3.4) are the usual ones
to assure that expansions (3.2) and (3.3) are convergent. A
comparison can be set between the asymptotic rates of con-
vergence given by Eqgs. (3.4a)—(3.4c) for n > 0, with that of
the sequences of partial sums of the corresponding expan-
sions, i.e., the [0,m] ;o). It is seen that when going to the nth
row of the Padé table (n > 0), the rate of convergence is in-
creased, relative to the first (n =0), by factors of the order of
(a—Dnl/(n+a— 1) (0=0,a>2),(1/m)" (0< 8 <, a>0),
and (1/m)*"(@=r, a>1). Furthermore, the behavior of the
[n,n+m], is essentially similar to that of [r,n+m],q, [cf.
Egs. (3.4a) and (3.4d)].

The discussion above concerns asymptotic properties,
and motivates the use of PPA. In the next section, their prac-
tial significance is investigated.

4. NUMERICAL APPLICATIONS TO PHYSICAL
PROBLEMS

In this section, the numerical application of the trans-
formation procedures outlined in the preceding ones is con-
sidered for the summation of slowly convergent, divergent
and oscillating partial wave expansions of the scattering am-
plitude. Four cases are studied. They are representatives in
the field of atomic and molecular processes, of those in
which the calculation of the scattering amplitude from the

143 J. Math. Phys., Vol. 20, No. 1, January 1979

[partial wave expansion is troublesome. They are:

(A) The elastic e-He collision in the range 100400 eV;
(B) The scattering by a Lennard—Jones potential;

(C) The scattering by a repulsive inverse square
potential;

(D) Coulomb scattering.

For these cases, the rows of the Padé table, i.e., the ap-
proximants [n,n + m] with fixed n, were calculated by means
of the 7 algorithm. Other sequences of the table could be
considered. One of these could be the usual near diagonal
PPA [n,n+ m] with fixed m. However, the numerical work
involved in calculating a [»,n + m] from the partial sums, by
using the 7 algorithm, increases as n2. This suggests keeping
r as low as possible, although, the numerical evidence indi-
cates that the accuracy of the PPA increases with #, as pre-
dicted by the asymptotic estimates [cf. Egs. (3.4a)-(3.4¢)].

wave sSums

Partial

60 120

8 (deg.)

FIG. 1. Case (A) elastic e-He scattering. Number of partial waves required
to obtain the elastic differential cross section within an accuracy ¢, by using
different PPA; solid line: partial wave sums ([0,0+ m]); dashed line:
[2,24m]; dash-dotted line: [5,5+ m]. The scale on the right corresponds to
the partial wave sums.

C.R. Garibotti and F.F. Grinstein 143



TABLE L. Electron-helium scattering at 100 V. Number of partial waves
required to obtain, by using PPA, the forward cross section with the indicat-
ed accuracies.

€ [0,0+m] [1,14m] [2,2+m] [3,3+m]
10 300 160 110 80
10" 3000 1580 1040 780

Here, the main interest is to compare the efficiency of
different PPA when calculating the differential cross sec-
tion. The efficiency measure of an approximation has been
taken as the number of partial waves required to obtain a
given accuracy. It is assumed that a sequence A, is approxi-
mating the value 4 within an accuracy e, by using m, partial
waves, if m, is the least integer such that |4, — 4|/|4| < € for
m > m,. The method used for the determination of the refer-
ence “‘exact” value 4, will be indicated for each particular
interaction.

A. Elastic electron-Helium collision

The phase shifts given by the extended polarization
method studied by La Bahn and Callaway® have been used
for energies in the range 100400 eV. The asymptotic behav-
ior of the interactions involved is of the electron-induced

dipole type [V (r) ~ A/r*]. Then, the asymptotic theorems
[Egs. (3.4)] are valid in this case.

The reference values were calculated with higher order
[n,n+m] PPA, n ranging from 10 to 200. In this way, it was
possible toobtain|f (8 )F with four and eight significant figures
for 6=0 and 6540, respectively.

In Fig. 1, the number of partial waves required to attain
accuracies €= 107" and 107, with the low order PPA
[2,24+m]and [5,5+ m], is plotted as a function of the scatter-

[7 T YT I A N | B "7"7')—“-4
1
o0} £=10" #‘600
| -
J‘L‘OO %
( 2
N . R
T SVeat i
2001 h y //l '\‘/ | V200
O A iU
€ I I l\/‘ | 1
60 120 9 (ceg.)

FIG. 2. Case (B) scattering by a Lennard-Jones potential. Captions as in
Fig. 1, e= 102
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800

Partial wave sums

FIG. 3. Same as in Fig. 2, €= 10 ".

ing angle, for the energy £= 100 eV. A comparison is set
with the corresponding curves for the partial wave sums.
Results for the critical case =0 are shown in Table I. Simi-
lar behaviors are obtained for the other energies.

B. Scattering by a Lennard-Jones potential

The scattering of particles with a reduced mass u by a
(6,12) L-J potential

o=l () (7))

can be parametrized by means of the de Boer parameter
02=h/QuV,0?)"*and the reduced energy e=E/V,. The cal-
culation was performed in the range {2 < 0.3, where rainbow
scattering occurs' and where the covergence of the partial
wave expansion is worst. In this range, the phase shifts are
well represented by the semiclassical JWKB approxima-
tion,"* and were calculated by using a Gauss—Mehler quadra-
ture, as proposed in Ref. 12.

The reference values were determined as in the prece-
dent application. In Figs. 2 and 3 the case 2=0.1,e=2 s
studied for relative accuracies e= 102 and 107, respectively.
Similar results can be found for other values of the param-
eters, in the 2 range considered. For fixed €, the number of
partial waves increases considerably when (2 decreases and
(or) e increases.

By inspection of the figures, it can be seen that the rela-
tive error of the partial sums is a strongly oscillating function
of 6. This behavior is closely related to the interference ef-
fects which, in turn, are responsible for the high frequency
quantum oscillations of the scattering amplitude, typical for
this kind of potentials. The relative error curves for the PPA
show a considerable attenuation of the oscillations, which
increases with n. The plots have been made with a 0.5 degree
step in the rainbow scattering range (15°-60°)"* and a four
degree one elsewhere. Further oscillations between the suc-
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200

100

200

100

§ (deg.)

60 120

FIG. 4. Case (C) scattering by a repulsive inverse square potential. Captions
as in Fig. 1. The number of partial waves involved in the calculations with
the partial sums, have been determined by recurrent use of Eq. (3.4b).

cessive angles considered do not modify the comparative
analysis of the approximations.

C. Scattering by a repulsive inverse square
potential

For the potential V' (r)=g/r * (g > — 1) the exact phase
shifts are energy independent, and are given by

D

The reference values of £(6) can be obtained with any re-
quired accuracy by a method described in a previous paper.'*
The case g=1is considered. The general qualitative features
of the results do not change by increasing g. In Fig. 4 signifi-
cant curves are shown for this potential. For 6=0 the exact
f(€) has a branch point, no rational approximation can be
accurate, and the partial wave expansion diverges. This ex-
plains the unbounded increase of the relative error curves of
the PPA as 6—0. For 8= the partial wave sums for f(0) are
oscillatory and do not define £ (), then, their error curves
go to infinity as —. The PPA give finite and accurate
values for f (), illustrating their power as a regularizing
mechanism.

D. Coulomb scattering
The scattering amplitude for the potential

V(r)=28/r

can be characterized by the parameter y=8/k, where k is
the magnitude of the wave vector. This is a very interesting
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case because the PPA approach proves again to be a power-
ful regularizing method. The amplitude £ (6 ) is well defined,
for 6840, by

£0)=—=Y_exp|2ico—iy In[(1 —cos6)/2]}.
1—cosf

However, the expansion
£O) = |2ﬂ S QL+1) exp(2io ) P (cosh),
I r=0

where o, =argl"(L+ 1+1iy), is divergent, and is only a for-
mal representation of the amplitude.

In Fig. 5 representative results are shown for y=1.
Again, changes in the value of y preserve the general qualita-
tive behavior of the approximations, and only affect the
number of partial waves involved for each 6. The conver-
gence of the PPA is fast over all the angular range, except for
6—0. For cosf=1thef (6 Y hasabranch point and the ration-
al approximation scheme fails, as in the preceding
application.

5. DISCUSSION

In Sec. 4 it has been shown, that the number of phase
shifts required to obtain the differential cross section with a
prescribed accuracy, can be remarkably reduced when the
PPA approach is used as an alternative summation method
to that of the partial wave sums. We have not found fixed
rules allowing one to select the most efficient PPA for a given
application, although some hints can be obtained from the
numerical results. In general, it can be seen that, as shown by
Figs. 1-5, the error curves corresponding to PPA with dif-
ferent orders n, tend to overlap as the accuracy requirements
decrease. This fact suggests that low order transformations

100—\.\ | ﬁr#j

200 1 ‘ b

100F -
AN
A
. T —
_ 1 1 1 i 1
60 120 0(deg.)

FIG. 5. Case (D) Coulomb scattering. Captions as in Fig. 1.
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FIG. 6. Phase shifts §, as functions of angular momentum L for the cases
considered.

should be preferred when relatively low accuracies are
sought.

As noted by the end of Sec. 2, the calculation of the
[n,n+m] PPA is equivalent to starting to transform the
original series from its mth term, and it can be of advantage
to have criteria for selecting a proper least value for m. In
order to discuss this possibility, for the applications here
considered, the corresponding phase shifts §; have been
plotted in Fig. 6, as functions of L. For cases (A), (C), and
(D), where monotonous §; are involved, no special least val-
ue for m has been found. In principle, the PPA transforma-
tions can begin from the first term of the partial wave expan-
sion, although keeping » as low as possible. For the
Lennard-Jones potential [case (B)], the PPA give conver-
gent results, when the number of phase shifts employed in
the calculations is greater than L, the inflection point of the
function §; =8(L ). By adding up the first L, partial waves of
the expansion, and transforming the series from there on, the
convergence of the PPA is fast, particularly in the rainbow
scattering region. It is to be noted that the information used
in this way is similar to that required by the semiclassical
approximation methods."

Numerical convergence is attained quite before the §;
reach their asymptotic Massey—Mohr expression.' This fact
shows that one of the conditions used to obtain Egs. (3.4) is
not actually necessary to assure the convergence of the PPA.
This stresses the importance of the approach from the practi-
cal point of view.
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Regarding the behavior of the error curves as a function
of the scattering angle 6, the results agree, qualitatively, with
the asymptotic predictions of Egs. (3.4a)—(3.4c), when these
apply. The relative error displayed in the figures is essential-
ly given by

Ref (0 .
622'|—;{0()—|Z' Ref(6) —Reln,n+m ), | (5.1

since the contribution of the error of Im[rn,n + m] () is negli-
gible compared to that of Re[n,n +m] () To simplify the
discussion, consider 8£0, and n even. Then, using Eq. (3.4b)
in (5.1},

) Ref ()| (sinf)"~'?Qa+n—1)lsinA,, , ,
e~
F(0) *(sin6/2)" ' 2m) (2 — DYlim© 7+ 172

(5.2)

with @>0. When n=0, i.e., for the partial wave sum, the
factor [sin%(6/2) sind]"? predicts an increase of € for
cosé——+-1, and a minimum at 8,,= 120°. The curves corre-
sponding to cases (A) and (C) show these general features. A
slight shift in the position of the minimum can be easily seen
tobeduetothefactor R (6) =[Ref (8)/| f(O)}. Incase(B), R (6)
is also responsible for the fast increase of the curves for
0>86,,. This fact can be traced down to a strong cancellation
between the contributions to the scattering amplitude com-
ing from the partial waves for L < L, and those with L > L.
Furthermore, the strong oscillations of R (&) disguise the ex-
pected minimum of the curves.

For n=0 in Eq. (5.2), the factor (sing)" ~'/?

«(sin26/2) "~ '/2 decreases monotonously with increasing 9,
consistently with the results obtained for cases 4 and C. This
is expected on physical grounds, i.e., as 8 increases the con-
tribution of the waves with large angular momentum should
become less important. For the Lennard-Jones potential,
the slight increase at 8~ 6,, followed by an essentially flat
behavior, can be explained as due to the factor R (8 ) and the
indefinite sign potential.

A remark should be made regarding the importance of
the PPA approach as a regularizing procedure for divergent
and oscillatory partial wave expansions, as seen in applica-
tions (D) and (C) ( for 0=1), respectively. Many of the gen-
eral features discussed above also apply to these cases. This
suggests that the convergence domain of the PPA is actually
larger than that given by the convergence theorems.' More-
over, the PPA may be well behaved even for values of cost/
outside the physical interval [—1,1], and hence be a power-
ful method for the analytical continuation of the scattering
amplitude into the complex cos@ plane.
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On the matrix representation of closed linear operators:
An extension of the Von Neumann’s theory
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The general theory of the matrix representation of operators in scalar product space is examined. It is
proved that an extension of the Von Neumann’s theory on the matrix representation of closed symmetric
operators in Hilbert space is possible for a larger class of closed operators. A necessary and sufficient

condition for the existence of a matrix representation of operators in “Von Neumann’s sense” is given.

1. INTRODUCTION

The problem of the matrix representation of an opera-
tor A with domain D, in a separable scalar product space D
consists essentially of two parts:

(a) To find, for a fixed orthonormal basis {¢,) in D, a
matrix (4 ,, ) which allows to determine for any vector
p=3%_,& e €D itsimage Y=Agp, i.e., the components
77, of the vector ¢.

(b) To determine the exact relation between the opera-
tor 4 and the matrix (4 ,,), so that it is possible to obtain
the operator A from the matrix (4 ,,) and the basis (e,).

The part (a) has been solved, relatively to any orthonor-
mal basis chosen in the space, for the operator' of B (H ) and
for those? of C(, by means of the generalizated closure equa-
tion or using the weak® continuity of the operators.

The part (a) of the problem is also solved for any opera-
tor 4, defined in a separable scalar product space D, which

admits an adjoint A* with D ,nD ,. =D, relatively to any
basis chosen in D ,nD ,. by means of the generalizated clo-
sure equation.’

We prove in this paper that in the last case part (a) can
be solved using the continuity of the operator 4 in some
suitable weak topologies that is equivalent to the existence of
the adjoint operator.

The matrix (A4 ,,) in all cases is determined by the
relations

A, =(4e e ),

Problem (b) is more complicated. The complication
consists in the fact that, even if it is possible to construct a
matrix (4 ,,.), in the sense of problem (a), the domain of this
matrix is different from that of the operator 4 because the set

D(A/‘,)={¢= igvevepzi iA,uvgv

v=1 p=1lv=1

u,v= 1,2,

z<°o]

is generally larger® than D,. Hence 4 and (4,,,) are different
operators and there is no general connection between these
operators.

It is obvious that these pathologies do not arise if the

domain of the operators is the whole space, as it happens for
the operators of B (H ) and for those of C,

“Work supported by C.R.R.N.S.M., Istituto di Fisica—Universita di
Palermo.
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Hence it is clear that if it is easy to give a definition for
the matrix representation of the operators of B (H )or Cp,, itis
not equally easy for other operators.

These difficulties have been overcome by von Neu-
mann,® for the closed symmetric operators in Hilbert space
H, introducing a suitable definition of matrix representation.
He observed that if 4 is a closed symmetric operator, densely
defined in a separable Hilbert space H, and (e,) any
orthonormal basis in D ,, letting sz (Ae,, e#), the closure
of the operator R defined by the matrix’ on the linear enve-
lope {e,}* is generally a restriction of 4, i.e., RCA. Von
Neumann proved that there exists an orthonormal basis in
D, for which R =A. In this case von Neumann said that the
matrix (4,,,) “‘represents” the operator 4 relatively to the
basis (e, ).

We have proved in this paper that the von Neumann’s
theory can be extended to a larger class of closed operators in
a separable Hilbert space H. This class, obviously, includes,
the closed symmetric operators.

We have also given a necessary and sufficient condition
in order that a closed operator in H admit a matrix represen-
tation in von Neumann’s sense.

2.MATRIX REPRESENTATION OF UNBOUNDED
OPERATORS IN SCALAR PRODUCT SPACE

Definition 1: Let E, Fbe two linear manifolds of a scalar
product space D. We say that E is endowed of the F-weak
topology?® if the topology in E is determined by the set of
seminorms

{p—A@. Y/ PEE | yepr

If both E and F are dense in D the topology is a Hausdorff
one.

Theorem 1: Let E, F be two dense linear manifolds of D
and 4 an operator with domain D , =E ; the following pro-
positions are equivalent’:

(i) A4 is continuous for the topologies o(E,D )—0(D,F)
(ii) There exists the operator A* (adjoint of 4 ) with do-
main D 4. JF.

It is obvious that o(D,D ,.) is the strongest of the o-
topologies in D for which 4 is continuous. It is also obvious
that A* is continuous in the topologies
o(D ,D)—0o(D,D 4u).
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From now on, we assume that the scalar product spaces
that we consider are separable.

Theorem 2: Let A be a linear operator in a scalar prod-
uct space D, with domain D ,, which admits an adjoint A*
suchthat 4 =D ,nD ,. isdensein D, let (e,) be an orthonor-
mal basis in D for which e €4, (v=1,2,---). Letting
A,,=(4e,, e,) for g=27 &.,e,€D, and
Y=Ap=Z3_,7,e,, we have

= i Auvé’v‘
v=1

Proof*®: Since we consider here both the norm topology
defined by the scalar product and the weak topology of Defi-
nition 1, we use in this proof the symbols *‘s” (strong) and
“w” (weak) to indicate the limits in the first and second to-
pology respectively.

Let (e,) be the fixed orthonormal basis, since the restric-
tion of the norm topology in D , is stronger thano(D ,, D)
we have

Y gD,

p= ngev—hm Zé‘ e,

\:‘l n— 0 V«a

:limwi &.e,

H-roo o—]

ThenV geD ,
=(Ag, eﬂ)

———(A hm‘”Z§V . )

e = |

(Ap),

= lim i é’v(Ae v? eu)

N oo g, =)

= Z §\A I3

ve=l
We have made use here of the linearity of 4 and of its con-
tinuity in the topologies o(D ,,D )—o(D,D ,.).

Since A* (which also has dense domain) is continuous in
the topologies (D 4.,D }—o(D,D ,..) we can, in an analo-
gous way, prove that

A*¢),=> £, 4,,=

v=1

V=3 £.e.eD ..

v=1

Sed,

The matrices obtained by the operators 4 and 4 * are the
adjoints of each other and satisfy the relations:

o 2 o
ZAM,; cw, S ZA#,,{Z<OO
v=1 v=1 tu=1

Notice that only with an operator which satisfies the
conditions of Theorem 2 can we associate a matrix in the
sense of point (a) of the Introduction, because the proof of

=1
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this theorem emphasizes that the basis must belong to
D ,nD,. and the operator must be continuous in the sense of
Theorem 1.

We will now consider point (b) of the Introduction.
This problem is solvable only for some closed operators de-
fined in complete scalar product space (Hilbert space).

Definition 2: Let (4,,,) be a squarable matrix, i.e., a ma-
trix for which

S U< o

v=1

and i ’A#VIZ< 0.
u=1

Let (e,) be an orthonormal basis in H and R the operator
defined by the matrix (4,,,) on the basis vectors letting

Re = i A,.e,

and extendmg by linearity to the linear envelope {e }* of
(e,), and R its closure. We say that R is the operator yielded
by the pair matrix basis {(4,,,), (e,)].

In an analogous way, we can introduce the operator R
yielded by the pair matrix basis | (4 /“) (e,)}. Generally the
operator R’ is not the adjoint of the operator R.

Definition 3: Let A be a closed densely defined operator
in H which admits an adjoint 4 * such that A=D nD,. is
dense in H. We say that the basis (e, ) is a basis for a matrix
representation of the operator A4 if:

(i) the elements of the basis belong to 4,

(ii) letting 4, = (Ae,,
the pair matrix basis {(A

e,), the operator R, yielded by
), (e )}, coincides with 4.

"

Theorem 3: Let A be a closed operator in H which ad-
mits an adjoint 4 * such that A =D nD, . is dense in H, and
(e,) a basis in 4; the following two propositions are
equivalent:

(i) ¥ gD, there exists a sequence {g, | C{
that ¢, —@ and Ap,—Ag .

e " such

(ii) The basis (¢, ) is a basis for a matrix representation of
the operator 4.

Proof: We prove first that (i)=(ii).

Letting 4, =(4e,, e )andA/,‘ (de,, e,), wecande-
fine the operator T’ by the relation

T'Y= 2 n.€,
"
with
=3 A8
on the set D,.. of all vectors ¥ =37 ,£ e, for which

X 5 —_ 2
Z] l Z A \'yg\' <
= v ]

we prove that 4 *=T".

In fact, it is obvious that 4 *C 7’'. We show now that
T'CcA*

Let yeD,. ., with y=27 £ ¢., we have

[l
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(dep V=3 E(te, e)=3 4, F.

v==] v 1

On the other hand we have
(.le’e’u)z Z 14—1/;5»"
=1}
Hence we obtain

(Aelu’ ¢) = (T'¢vey) = (e,u’ T’¢)
by linearity, it follows that

ALD=(LT"P) VY fele}r,

If eD,,, by the hypothesis, there exists a sequence
{@.} C{e,}" such that @, @ and 4p,—Ag; then we have

veD,..

(qu’d') ::( ll{n A¢n’¢): llm (A¢n’¢)

H-»c0

= lim (¢n’T 'lp) :( lim ¢n’T ’I/J)

=(@.T"Y).
Hence yeD, . and A *Y=T"¢,ie, T'CA*.
In order to complete this part of the proof, we consider
the operator R. It is obvious that R * existsand R *C T’; we
have then

R*2DA*=T', R*CT'=4%

i.e.,, R ¥=A * and, since the space H is complete, R=A.
_ Conversely, suppose that (ii) is satisfied. The operator
R is defined, as it is known, from R adding to Dy = {e,} " all

those elements of D, which are limits of sequences
{ f,} C D, generating convergent sequences Rf, and requir-

ing that Rf= lim Rf,; i.e., (i)=>(i).

We shall now prove that the matrix representation is
possible only for a special class of closed operators.

Definition 4: Let 4 be a closed operator which admits an
adjoint 4 * such that4 = D D, .is densein H. We say that
A is a A-minimal operator if for every closed operator B such
that

ADB2A4/4

we have 4 = B.

Theorem 4: Let A be a closed operator which admits an
adjoint4 *suchthatd = D nD,.isdensein H. Inorder that
there exist a basis for a matrix representation of the operator
A, it is necessary and sufficient that 4 be a A-minimal
operator.

Proof: We prove first necessity. We suppose that there
exists a basis (e,) for a matrix representation of 4. Let B be a
closed operator for which

ADB34/4.

By definition, R=A. But, on the other hand, B is a closed
operatorand RC B, hence RCB,sothat B=A4,i.e.,Aisa A-
minimal operator.
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Now we prove the sufficience. In H @ H we consider the
graph of the operator 4, that is, the set

G,={{p.Ap}/peD ).

Itisknown that G , is a subspace of H & H. We consider now
the graph of 4/4, which we call G’,

G'={{pdp}/pea}.

It is obvious that G” is a linear manifold of G ,. We prove that,
in our hypothesis, G' is dense in G ,. In fact, if G' is not dense
in G, we have G'C G, so that G' is the graph of a closed
operator B and D;DA4. Hence

ADBDA/A

and so 4 is not a 4-minimal operator, in contrast with the
hypothesis. We conclude that G’ must be dense in G .

Then in G’ it is possible to find a basis for G ,. We call it
({ fuo Af,}); consequently, { £} is dense in 4 and hence in
H. In order to obtain a basis satisfying the condition (ii) of
Theorem 3 it remains only to orthogonalize the sequence
L)

1t is evident that a closed symmetric operator 4 with
dense domain D, is a D ,-minimal operator; hence the von
Neumann'’s theory is a particular case of this theorem.

Definition 5: Let A be a closed operator which admits an
adjoint 4* suchthatA= D ,nD ,. isdensein D. We say that
A is a A-maximal operator if for every closed operator B such
that

A*DB*DA*/A

A =B results.

We say that the operator A4 is A-simple if it is both 4-
minimal and A-maximal.

It follows from the Definitions 4 and S that the operator
A is A-maximal iff its adjoint is A-minimal and that a closed
operator is A-simple iff its adjoint is also 4-simple.

It is easy to prove, using Theorem 4 and Definition 5,
the following:

Theorem 5: Let A be a closed operator, which admits an
adjoint 4 *, suchthat A =D ,nD ,.isdensein H. In order that
there exist a basis (e,) for a matrix representation of 4 and a
basis for a matrix representation of A *, it is necessary and
suffficient that 4 be a A-simple operator.

The last theorem does not imply that if 4 and A* admit
a matrix representation in the sense of Definition 2, the basis
for this representation is the same for both. This appears
clear from the following:

Theorem 6: Let (e,) be a basis for a matrix representa-
tion of the 4-simple operator 4. The basis (e,) is also a basis
for a matrix representation of the operator A* if, and only if,
one has

T'=T*
where the operator 7'’ is what we have defined in the proof of
Theorem 3 and the operator T'is defined in an analogous
way," exchanging the matrix (4 ,,,) with the matrix (4 ,,).
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Proof: If (e,) is a basis for a matrix representation of
both A and 4 * we have, by Theorem 3

A*=T' and A=T
and since 7', T, 4, A* are closed it follows that
T*=A*=T".

If T'=T*, since A admits a matrix representation with
respect to the basis (e, ), it follows, by Definition 2 and Theo-
rem 3, that 7' =A*, hence T*=A%*; i.e., T=A. Now, if we
call R’ the operator defined by the matrix (4 ,,) on the lin-
earenvelope { ¢, }©, R’ CA* . But, since, as one sees imme-
diately, (R')* C7, it follows that

(RY*DT*=4* e, R DA*..

Hence R' =A4* and, by Definition 2, the matrix (4 ,,) re-
presents the operator 4* with respect to the same basis {(e,).

Since, generally, a closed symmetric operator A4 is not
4-simple, there does not exists a basis for a representation of
A*. In fact a closed symmetric operator is A-simple iff it is
self-adjoint; in this case it follows easily by the last theorem
that

T'=T.

It is obvious that the matrix representation of a A-mini-
mal operator 4 (4=D D ,.) leads, generally, both for the
operations and for the change of basis, to the same
pathologies that von Neumann pointed out for the closed
symmetric operators. Hence these pathologies make the use
of matrices unsuitable for the study of unbounded operators.
Notice that the use of the matrix representation does not
present difficulties if they belong to C),
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APPENDIX

Let us give a proposition which supplies a practical way
to construct a A-simple operator which is, generally, neither
bounded nor self-adjoint.'?

Theorem 7: Let M\, M,,...,.M - be a sequence of sub-
spaces of a Hilbert space H which are mutually orthogonal
and such that

H~ o M,.
f=1

If feH, we call f; its projection of M.

Let 4, be a given linear bounded operator invariant in
M, (i=12,-)and 4 its adjoint in M ,.
Then for

a=|r- S st 3, filP <

=1
and 31477, < |
i=1

there exists one, and only one, closed operator 4, generally
unbounded, which is 4-simple and coincides with 4, on each
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M. Its domain is the set of the elements feH such that
Z 14, f:ll* < .
i=1

and for these f

Af=3 4,1,
i=1

Proof: It is obvious that the operator 4 is linear and its
domain is dense in H, because it contains all the sums of the
form

S fo feM.

i=1
We show, first, that the operator A4 is closed. In fact for
¢, —¢ (p,eD,) and Ap ,—y with

%=i¢m¢=i¢wmw=iw
i=1 i=1 i=1
one has

limiAi¢r,=i v

rooia i=1

then for geM

I i}

(hm i Ai¢)rv’ g/)

oo ]

Since ¢,—@, @, —g; results and, by the boundedness of
A;in M, Aﬂ;,’—»AJqoj,

and hence
Iim(Aj¢J,/gj) =(1imAj¢>,/, gj>
Z(Aj¢j: gj)z(djj) g,‘)

which implies that

Slie =5 190k < oo

hence peD  and Ap =1, so that 4 is a closed operator.

The fact that the operator, with dense domain, is closed
implies, in a Hilbert space, that it admits an adjoint.

We define the operator T by the relations

/=% 4.1,

i=1
Dr=|r= 5 re:3 s <o
i=1 i=1
we show that T=A*.
It is obvious that the domain of T is dense in H and

besides D ,nD =H.
For feD, and geD,.
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Ure)=3 (4, f,2)

i=1

so that TCA*.
Conversely, for feD , and geD ,., by
(Afg)=(f.4%g)

it follows that
S A, fig)=3 (f, (4%9) ).
i=1 =1

If, particularly, we choose f= fp i€, feM, we have
(f_,': Aj‘gj):(Ajfjs gj):(fj’ (4*g) j);
hence A*¢=327 4 g, i.e, A*CT, thatis, 4*=T.

It remains to prove that the operator 4 is A-simple. If B
is a closed operator such that

ADBDA/A,

it is obvious that each element 27_, f; belongs to Dz and
B ilf, —A ilfi.
If feD ,,
f=1lim S £,
o0 [T
and
Af=1im S 4, f,=1imB S f;
00 4 now =4
since B is closed,
feDg and Bf=Af
so that B=A.

In analogous way we can prove that 4* is A-minimal
and so 4 is a A-simple operator.

In order to complete the proof, it remains only to prove
the uniqueness of the operator A.

Let A’ be a A-simple operator which coincides with 4,
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on M, Since 4’ is closed it is necessarily defined for all the
elements f'such that the series £= 4’ f, is convergent and

i=

the sum of this series is equal to Af.

Since 4f;=A4f; and the convergence of a series of ortho-
gonal elements is equivalent to the convergence of the series
of the squares of their norms, the set of these vectors fcoin-
cides with D, and

Af=Af,
ie.,
A'DA.

The statement follows from the A-maximality of 4.

'B (H )is the well known *-algebra of bounded operators in Hilbert space H.

For the matrix representation of its operators see, for instance, (a) N.I.
Akhiezer and .M. Glazman, Theory of Linear Operators in Hilbert Space
(Ungar, New York, 1961), Vol. L. (b) V.1. Smirnov, A4 Course of Higher
Mathematics (Pergamon, New York, Oxford, London, 1964), Vol. V.

*Cis a *-algebra of unbounded operators. For the definitions and proper-
ties of Cp, see: R. Ascoli, G. Epifanio, and A. Restivo, Commun. Math.
Phsy. 18, 291 (1970); Riv. Mat. Univ. Parma 3,21 (1974); G. Lassner,
Rep. Math. Phys. 3,279 (1972) [the *-algebra C,, s called L.(D) by
Lassner]. The theory of matrix representation of operators of C, has been
given by one of the authors of this paper in G. Epifanio, J. Math. Phys. 17,
1688 (1976).

'We call weak topology of the space £ (or D ) the topology defined by the set
of seminorms

fo—l@. W)W/ veH (or D)}

‘See, for instance, M.H. Stone, Linear Transformations in Hilbert Space
(American Mathematical Society, New York, 1966), Chap. 111, §1, Theo-
rem 3.1.

‘See, for instance, Ref. 4, Chap. II1, §1, Theorem 3.3.

‘See J. von Neumann, Math. Ann. 102/1, 49 (1929); J. Math. 161, 208
(1929). Various books report the von Neumann’s theory of matrix repre-
sentation of closed symmetric operators. See, for instance, Ref. 1(a), Sec.
47 and Ref. 1(b), §3.

"The operator R is defined on the basis vector by the relations
Rev=3%" 4 and extended by linearity to the linear envelope {e |*.

"One uses for this topology the notation o(E,F).

'For the proof see N. Bourbaki, Elements de Mathématique: Espaces Vec-
toriels Topologiques (Hermann, Paris, 1965), 2nd ed., Chap. 11, §6, Prop. §
and corollary.

It is known that the proof of this theorem is usually made by means of the
generalized closure equation.  Hence this is a confirmation that the exis-
tence of the adjoint operator is equivalent to the continuity stated in the
Theorem 1.

""Both the operators Tand 7' are closed. See Ref. 4, Chap. 111, Theorem
3.2.

“This theorem reduces to that of Riesz and Lorch if 4 is self-adjoint. See F.
Riesz and B. Sz.Nagy, Lecons d *analyse fonctionelle (Gauthier-Villars,
Paris, 1972), Chap. VIIL, n. 120.

o
(:\‘(‘;1
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Wigner coefficients for SU(6)>SU(3)2SU(2)?

S. . So and D. Strottmanb)
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A technique for evaluating the Wigner coeficients for SU(6) with the physically interesting subgroups
SUB)®SU(2) is outlined. Coefficients appropriate for coupling a single quark to a many quark

wavefunction are tabulated for functions of nine or fewer quarks.

I. INTRODUCTION

The SU(6) nonrelativistic quark model' has proven to
be remarkably successful in organizing the hadronic parti-
cles into multiplets and accounting for many of the observed
decay rates. The SU(6) group also appears in some relativis-
tic quark models, such as the bag mode},** in those cases in
which the quarks are assumed to be S wave and their total
angular momentum is only the intrinsic spin. The calcula-
tion of masses and the decay channels of multiquark and
quark antiquark states may require Wigner and recoupling
coefficients which are the generalization to SU(6) of the
well-known Wigner (Clebsch-Gordan) and Racah coeffi-
cient of the rotation group. These coefficients have not pre-
viously been calculated, save for a very few special cases.**

Ideally, closed, analytic expressions would be available
for the SU(6) D SU(3) ® SU(2) Wigner coefficients, as in the
familiar case of the rotation group, or for the SU(3) DSU(2)
group.** However, severe mathematical difficulties make
this prospect at the moment merely a pious hope. The unique
specification of a state belonging to an irreducible represen-
tation of a unitary group SU(n) requires 1n(n — 1) labels in
addition to the n — 1 quantities which specify the irreducible
representation. These latter quantities may be chosen as the
eigenvalues of the n— 1 invariants, of which the first is the
familiar Casimir operator.

In the so-called canonical chain of groups, viz.,
SU(n)DOSU(n—1)D---DSU(D), m

the additional labels are given by the labels of each of the
subgroups, and as a whole comprise the Gel’fand-Tsetlin
pattern.” When the subgroups are not those of the canonical
chain, the subgroups do not provide an adequate number of
labels with which to specify a state uniquely. Two examples
of noncanonical chains familiar to physicists are SU(4)
DSU() ® SU(2) (the Wigner supermultiplet model®) and
SU(6) DSU(3) ® SU(2). A third possibility is

SU(8) DSU(4) ® SU(2), which might arise were a

charmed quark added to the three more usual quarks.

The mathematical difficulty is clear if one considers la-
belling a state which is an irreducible representation of
SUQRm)DSU(m) & SU(2). A state belonging to an irre-
ducible representation of SU(2m) requires m(2m — 1) labels.
The SU(2) subgroup provides two labels, namely the total
angular momentum or spin S, and its projection on the z axis.

“'Partially supported by ERDA Contract AT(11-1)-3001.
®Present address: Theory Division, Los Alamos Scientific Laboratory, Los
Alamos, NM, 87545.
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The SU(m) subgroup provides an additional m — 1 labels
which specify the irreducible representation of SU(in) plus
the 4m(m — 1) labels from the subgroups of SU(m), or a total
of 1(m+2)(rm — 1) labels. Hence, the subgroups of SU(2m)
provide in total only 1(m +2)(m — 1)+ 2 labels, and one
must find 2, 8, and 17 additional operators in the case of the
SU(4), SU(6), and SU(8) groups, respectively.

The two additional operators in the SU(4) DSU(2)

® SU(2) example have been found by Moshinsky and Na-

gel,® but they do not lend themselves easily to calculations,
being quadratic and cubic functions of the generators of the
group. Itis unlikely one might find eight simple operators for
SU(6) D SU(3) @ SU(2).

An additional complication occurs because the Kron-
ecker product of two representations of SU(6) is in general
not simply reducible. In the product

[ﬁ]X[fz]=[Zf]nf[f], @

which for the SU(2) group is just the Clebsch—Gordan series,
n , is the outer multiplicity and may be greater than one,
although this never occurs if either [ £,] or [ f;] represents a
single quark or antiquark state. The resulting states belong-
ing to the irreducible representation [ /] are not automati-
cally orthogonal. It is conceivable that an orthogonal combi-
nation may be chosen using a generalization of a technique
suggested by Moshinsky'® for the SU(3) group; such an ap-
proach is assuredly involved and not amendable to analytic
calculations.

Because of these difficulties, it appears inappropriate to
attempt a purely analytic solution for the Wigner and Racah
coeflicients of SU(6) DSU(3) ® SU(2). [The simpler case of
SU(4) DSU(2) ® SU(2) has been investigated by Hecht and
Pang''); the reader is advised to refer thereto to grasp the
magnitude of the difficulties, even in the case of the simpler
SU(4) representations.] Instead, a recursive approach is pro-
posed which is amenable to numerical calculations, but has
the disadvantage that it is purely numerical and as such in-
volves often arbitrary choices of phases (although the
Young-Yamanouchi choice of phases is maintained) and ar-
bitrary orthogonalization of basis states in those cases where
there is outer multiplicity.

In Sec. 2 the SU(6) D SU(3) ® SU(2) Wigner coefficient
is defined and necessary notation introduced. In Sec. 3 the
method of calculation is presented, and in Sec. 4 questions of
phase and the construction of antisymmetric wavefunctions
are explored. Examples are given in Sec. 5.
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2. THE SU(6) DSU(3) ® SU(2) WIGNER
COEFFICIENT

The technique used in this paper exploits the intimate
relationship between the unitary groups and the symmetric
group' and is a generalization of the technique used by
Jahn" to evaluate coefficients of fractional parentage em-
ployed in calculations using the nuclear shell model. An N-
quark wavefunction characterized by an irreducible repre-
sentation of SU(6) describes the symmetry of the wavefunc-
tion under the permutation of the quarks. It is, therefore,
simultaneously a representation of the symmetric group S .

An irreducible representation of SU(n) will be denoted
by the n labels [h,}=[4,--h,] which characterize a Young
partition of N with at most n rows. Since a column of # boxes
transforms as a scalar under SU(n), it is more convenient to
label the irreducible representations using the n — 1 labels

fi=h,=h; ,i<n. 3)
For SU(2), this leaves one label,

fi=h,—h,=285; C))
for SU(3), the two labels

A=h,—h, p=h—h, (%)

will be denoted by (Au). The dimension of a representation of
SU@3) is

gA)=3A + D+ DA +1+2) (6)
and the more familiar (to particle physicists), but nonuni-

que, notation is regained. The representations of SU(6) and
S, will be given by [ f3f5--fs] and [A,---he], respectively, where

N= ; h,= z} if ; + 6k, k=integer. (M

Expressions for the Casimir operator of SU(n) are given in
the Appendix.

A state belonging to an irredudible representation
[ fi-f5) of SU(6) will be denoted by

SU6)— | [fifs ]
SUB)XSUR)— | (4 p) Sw ®
I1I1,Ymg

where m ¢ is the z projection of the spinSand 7,1 ,, and Yare
subgroup labels of SU(3). If the SU(3) group in Eq. (8) de-
scribes the flavor degrees of freedom, then 7, I ,, and Y are
the isospin, its z projection and hypercharge, respectively.
The Wigner coeflicients of SU(6) DSU(3) ® SU(2) are inde-
pendent of the subgroup labels of SU(3) and SU(2) and any
convenient choice may be made. Obviously, the SU(6) coeffi-
cients are also independent of whether the SU(3) group in
the state (8) describes color, flavor or some other degree of
freedom. The label w denotes the eight additional quantum
numbers necessary to uniquely specify the state; as these are
not known, we shall allow w to run from 1 to r, where ris the
degeneracy which would otherwise result. The quantity o is
first needed in the five quark system with SU(6) representa-
tion [311].
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The SU(6) DSU(3) ® SU(2) Wigner coefficient reduces
the product of two states such as (8) above to a third state
which also belongs to an irreducible representation of
SU(6)3SU3) o SU2):

Uifs 1 LFON @1\ ]namse
Apu)So =H >l >]
11 Ym I1,Ym., p
(4] Al | LA
= )
VoS \gi) S, () Swo: A p)S o
I: [ f(l)] [ f(2)] (A)Sw
QS [ |Ap)Ss [ |11.vm, ©
s (U on
()8 Ap)S @, Ap)S0, 1A p)Sw
(A )80,
Cy (e e g )
‘PI\I.:Y, L1,.,Y., LI, Y,\I11,Y], (10)
NS
[f(l)] [f(Z)]
2 <S1Szm1m2[5ms> (/tllul)Slwx> (/17#2)32(‘)2>'
mom, IllleI IZIZZYZ

The label p distinguishes orthogonal states in those
cases in which there is outer multiplicity as may occur in the
Kronecker products of two SU(6) or two SU(3) representa-
tions, Eq. (2).

The second and third factors in Eq. (10) are the SU(3)
Wigner coeflicients®'* and the SU(2) Wigner (Clebsch-Gor-
dan) coefficients, respectively. The first factor is the so-
called SU(6) DSU(3) ® SU(2) isoscalar factor and may be
identified as the SU(6) DSU(3) ® SU(2) Wigner coefficient.
In Eq. (9) the product state is coupled to an irreducible re-
presentation of SU(3) and SU(2), but not SU(6). It will form
the basis of much that follows. In this paper we shall calcu-
late the SU(6) Wigner coefficient for the coupling of a single
quark with representation (10)1/2 to an N— 1 quark state.
The calculation may then be extended to the coupling of
several quarks to several quarks or anti-quarks in the usual
manner.”

3. THE EVALUATION OF THE COEFFICIENTS

As mentioned in Sec. 2, the calculation exploits the inti-
mate connection between the representations of SU(6) and
the symmetric group on N objects S . The properties of the
symmetric group are well documented.'**¢. Of essential in-
terest herein is that the operator

PN=% P, (i1
i==j

where P, permutes particles i and j, is diagonal between
representations of S , and has the eigenvalue
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{hywhs WPNILA (' 61D obtain the Wigner coefficients of SU(6) D SU(3) @ SU(2), it

B suffices to diagonalize PV in a basis labeled by representation

= %[Z hi=-3h f]é( [A:1,[F :D=C(A;]). (2)  of SU(3) and SU(2); the components of the resultant eigen-
f ! vectors will be just the desired Wigner coefficients.

In Eq. (12) [k, ] is the conjugate representation of [/ ;] and It remains to calculate the matrix of PV in thF basisl
is found simply by interchanging the rows and columns of specified by the state of Eq. (9) in the case for which [/ ]
the Young diagram for [4 ;]. From the preceeding discus- represents an N— 1 quark state and [f® ] =[1], a state of a

sion it is evident that PV is also diagonal in SU(6). Hence, to single quark.
|

vor ROT 1 vor (7] (- 5,6 .8, _C([hD
< Cuse. < Loy WS P T (ayss, T (10)%’“””“’) 148 uid 0z AT
(A [ (R W s 3
= <(woslwl X oyt WSO IPunl s X a0y o) )

Note that the states in Eq. (13) are labelled by the representations of S ., which are, however, simply related to the SU(6)
representations in a one to one manner through Eq. (7).

The matrix elements of the transposition operator P, _, , in the second term of Eq. (13) may be evaluated by using
SU(6) DSU(3) ® SU(2) Wigner coefficients to decompose a state of N— 1 quarks into the product of state of N —2 quarks and a
single-quark state, and recoupling the SU(2) and SU(3) representations separately:

VAR (1] [F ] ST
(s 103 @95 Prsel G 25 % g+ B0)
- 3 <[f"] % RYETARE ><[f”] (1] [fjl)—] >
T RS0 T 104l Quose N@u)s'e” (1031455
- [ | o o .
X("”HS'”'[? ; y J(—D‘-“‘-*““"*“W Y 0" Y0 A); L E)Ags) 1. (14)

In Eq. (14) U (---) is a unitary Racah coefficient® for the SU(3) group. Analytic expressions for the SU(3) Racah coefficints
needed for evaluating Eq. (14) may be readily obtained by using

UTC10)A " YAA0); Y (Aape D] == (— 1) 477 e

X 3 ULA"s")10)A)10)(Ap) Atz ]

(Ag2,0)

XU [A " )A0)Au) (A e S dagtas)  1(—1) (15)

Expressions for the Racah coefficients appearing on the right-hand side of Eq. (15) have been given by Vergados.!” The resultant
Racah coefficients are given in Table 1.

The matrix of P, ,, _ , may be constructed using Eq. (14) for a specified (1) S and [/"’] using all possible (4 ,)S; belonging
to [f" ] which will connect with (1) S. The matrix is then diagonalized; the resulting eigenvectors which are—up to a phase—
just the required SU(6) DSU(3) ® SU(2) Wigner coefficients may be identified with the appropriate irreducible representation
of §,,, and hence SU(6), by virtue of Eq. (12). It is apparent that this procedure defines a recursive procedure; to calculate the
Wigner coeflicients for a state of N quarks, it is necessary to calculate the coefficients for N— 1 quarks, and so on. However, it
does have the virtue that it resolves the problem of the multiplicity. If a Jacobi diagonalization procedure is used, eigenvectors
corresponding to degencrate eigenvalues are automatically orthogonal. This is a nontrivial advantage; the multiplicity is
already six for the nine-quark state [531](22)3/2 and increases rapidly with an increasing number of quarks.

An alternative, but equivalent procedure would have been to diagonalize the Casimir operator of SU(6), an approach
which would closely parallel the technique of Bayman and Lande'® to evaluate fractional parentage coefficients for /¥ and ;¥
configurations of fermions.

4. CONSTRUCTION OF TOTALLY and the coefficients in the expansion were known as coeffi-
ANTISYMMETRIC WAVEFUNCTIONS;CHOICE cients of fractional parentage. In the case that the #-fermion
OF PHASES state is labelled by irreducible representations of some

group, then the coefficients of fractional parentage may be

The expansion of a totally antisymmetric wavefunction ¢ ’ ) : X
identified with the Wigner coefficients of that group.

of n fermions as a sum over the product a state of n— 1 fer-
mions and a one-fermion state was introduced by Racah," It will be assumed for convenience that the quark wave-
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TABLE I. The SU(3) Racah coefficients necessary for the evaluation of Eq. (14).

UI(LOYAuNA 1 X10)(A 13t 1) Arie3)]

Auy=GApn+1)

X (Au#u)
(Aipt) A+1 =1 u+1)
G+1 ) e Via+2
A+1 A+1
A—1 pg+1) Viaa+2) 1
A+1 A+l
Ap)=GA+1 p-1)
(Aitss)
Aisttra) A+1 ) A pu—-1)
A+1 N S V@ +p+ ) +p+3)
A+p+2 Atp+2
@ a1y V(A +u+D)A+u+3) 1
A+p+2 A+u+2
Wpry=A-1 p)
(Airs)
Az Apu-1) A=1p+D)
=) —t Viwt2)
u+1 u+1
A+1 p+1) NVpw+2) 1
p+1 p+1

Other allowed coefficients: U[-]= +1.

function is specified by the irreducible representations of
SU(3),and SU(6)DSU(3), ® SU(2), where the subscripts f
and ¢ denote flavor and color, respectively. If quarks carry-
ing other quantum numbers such as charm or beauty are
included, then SU(3) , must be generalized to a larger uni-
tary group. This would not affect any of the discussion below
save for Eq. (18a). The totally antisymmetric state of »
quarks is

W(g"[hihe J(A u IS0AV (A DI 1. Y)

:(nA)‘VZZ D (g" [hyhs WA 20
)

XSweAv(r) )y (q" (Al I, Y,(r)). (16)

The summation is over the n, Yamanouchi symbols (r) al-
lowed by the irreducible representation [A,--A of S, ; ), is
the dimension of [4,+-A).

A sufficient condition that the total wave function be
antisymmetric is for ¢ and y to transform contragradiently
with respect to one another under permutations of the n
quarks. [Note that this differs from certain authors, e.g.,
Hammermesh,' who assume ¢ and y transform in the same
way; in this case one must insert an additional phase of
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(—). £ into Eq. (16).] The requirement that (4 u /) be
conjugate to [A+kg]:

(8885 )=(4 juu ;) =[hih] (17
immediately gives the restrictions

h<3, i=1=6, (18a)
g.<6, =123 (18b)

The first of these restrictions, Eq. (18a), is only ture in the
event that SU(3),is the group conjugate to SU(6). If SU(3)1s
enlarged to encompass further quantum numbers, then the
restriction is correspondingly less severe. For this reason no
restriction on the 4 , was imposed (for less than nine quarks)
when the SU(6) Wigner coefficients were calculated.

The decomposition of ¢ into a product of an (n —1)-
quark wavefunction and a one-quark wavefunction may now
be performed by applying the relevant Wigner coefficients
on ¢ and y separately. The SU(3) Wigner coefficients may be
taken from the tabulations of de Swart* or calculated with
available computer routines.” The SU(6) coefficients are
those of Table 11.
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TABLE 11. The SU(6)DSU(3) @ SU(2) Wigner coefficients. The SU(6) representations are arranged in order of descending value of C{[#]), Eq. (12)
and the SU(3) ® SU(2) representations in descending order of the SU(3) Casimir operator and ascending value of S.
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TABLE 1I. (Continued)
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(A ' )So" (10)%

[h]"'hG ] >
(A .1 )So

XUPLG A ol ) (A IS0 )G A0 | H O [y ("= (A ! JIY ) (g 1O 1Y

(/I’f,u'f)

— ’ 172
=2 (na/n ) <I’Y’ y lry

X{WQ@" (A ' LY [ b J(A ' IS0 ) Y (g(10)h) J Aot S

Equation (19) expresses the desired separation of 1 into
a series of antisymmetric wavefunctions of n — 1 quarks and
a single-quark function.

It remains to affix the phases of the SU(6) Wigner coef-
ficients subject to the condition that ¢([# ]) transform contra-
gradiently with respect to y( A ,u ;) . The ambiguity in phase
arises because there are, in general, several [f'] of n —1
quarks to which a single quark may be added to obtain the
representation [f] of n quarks. For given [ /], [ f@]
=[1] and [/}(A)Sw in the Wigner coefficient of Eq. (9), the
relative phases of coefficients with different (4,u,)S,w, are
uniquely determined by the requirement that it be an eigen-
vector of the matrix (P}, Eq. (13). An over-all phase of each
eigenvector is undetermined.

A simple example will make this more clear. The SU(6)
representation [21] is important since it contains a color
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(10) (ﬂﬂuf)><[h']"'h,6] [1]
(A" ' )s (10)%

[hl...hé ] >
(Aot S0

(19)

‘singlet, and the SU(3), representation conjugate to [21] is
(11), or the octet of baryons. The representation [21] may be
obtained by adding a quark to either [2] or to [11]. The rel-
evant Wigner coefficients are derived by diagonalizing two
different matrices, and hence one has no information on the
relative phase of the coefficients

<[2] (11 |[21] > and
(Au)S  (10)51(Aw)S
<[11] (1] [21] >
Aw)s (105 1Aw)s
The relative phase of these two coefficients may be de-

termined by the requirement that [21] transform in a contra-
gradient fashion to the SU(3), representation (11).

The transformation properties of the SU(3) Wigner co-
efficients may be determined by the symmetry relations of
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Ref. 13. Under particle permutation, particles in the same
row of the SU(3) Young tableaux are symmetric; those in the
same column are antisymmetric. The representations of
SU(6) must be opposite. Hence,

P, 1,8 (Ar-hdrD=—¢ (h}r)
or

P, ¢ ([hy-hd(r)=+¢ (Al(r)
if n and n— 1 are in the same row or column, respectively. If
n and n— 1 are neither in the same row nor column

P, ., AN =—1/a) ((h)(r)
—~(1—=1/a%"*¢ (h](r)), 20)

where (r') is the Yamanouchi symbol obtained by inter-

changing n and n— 1, and « is the ‘“‘axial distance,” or num-
ber of boxes in the Young tableux [#] between n and n— 1.

If (r) 1s not identical with (+"), then removal of the n'th
quark results in two different [4], and Eq. (20) may be used
in conjunction with the recurrence relation

<[f'] (| 0s1 >
Au)se (104 (Ap)Se
X<[f](r)lpn» l,n{[fI](r,)>

/] )

oy (1A [1]
(Ap1)S 0, (X'I,U‘I)Sla)l (10)% (/LU)S(L)

(] (1]

X < ” ” " n
G MATLIS " (10)}

[A] >
({(Ap)S\w,

/] /]
o oy

[/] >
Ap)So'

XU(IS"SYSS) ()% +5+57 48

AT+ A+ +A ’ i
X(_) + +A b+

X U[(10)0A" 1" Y Ap)(10);(A 1) (A )] @1

to determine the relative phase between the representa-
tions [# " ] and [#®] of n— 1 quarks. An over-all phase
remains, and this was fixed in the following (arbitrary)
manner. The representations [4,--+4¢] were arranged in or-
der of decreasing value of ([#]), Eq. (12). Similarly, the
(Au) were order by decreasing value of the SU(3) Casimir
operator; the values of S were, however, by increasing val-
ue. For a given [A](Au)S@ the first nonzero coefficient
coupling a quark to [#'](4'u")S @’ was taken to be positive.
The phases of all other coefficients leading to [A](Ax)Sw
are now determined.

This prescription has one unfortunate property. The re-
presentations [h;+-#] and [4,+ 1 h,+ 1---hs+ 1] are equiv-
alent under transformations of SU(6). Hence SU(6) Wigner
coefficients connecting [#,+ 1--he+ 1] to [A' |+ 1--h" ¢+ 1]
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should be identical to those involving the SU(6) equivalent
representations [/4,.--A¢] and [A' -k’ (]. Using the above
phase convention, the coefficients, although identical in
magnitude (assuming no multiplicity), in general differ, by a
phase. The only disadvantage apart from esthetics is that this
requires the tabulation of a few additional numbers.

In the actual evaluation of the Wigner coefficients, the
labels of the subgroups of SU(3) ® SU(2) never enter, but
they must be specified in any physical applications. There
are several equivalent ways to specify the three sublabels of
representations of SU(3). The more familiar method uses
hypercharge, isospin, and its z projection, i.e., the labels of a
U(1) subgroup (hypercharge) and an SU(2) subgroup (iso-
spin) and its subgroup label, 7 ,. These are the canonical
subgroups of SU(3) and, hence, there is no multiplicity. The
scheme used in Eq. (16) to label the subgroups of SU(3) .. isin
complete analogy. The quantum numbers used were €, A,
and v with A, v analogous to 7, I, and € analogous to hyper-
charge. The allowed values of €, A, and v for an SU(3) (Au)
are

e=p+q—(2A+p),

A=3u+p—9), (22)
v=r—A

with the integers p, ¢, and 7 restricted by the conditions
0<p<A,
0<g<p, (23)

O<r<u+p—yg.
An alternate scheme for SU(3), is to define the Carte-
sian quantum numbers #,, n,, and n;:

m=-N-A)+r—3u+q,
ny=(N—A)—r+ipu+p,
ny='(N+244+pu)—p—q, (24)

with N the total number of quarks. The # ; specify the num-
ber of quarks of each color. It is immediately clear that for a
color singlet, (4z¢) = (00), the number of quarks for each col-
oris 1/3N.

5. AN EXAMPLE

In this section a brief example of the application of the
SU(6) Wigner coefficients will be given. A possible excited
state of the nucleon may be constructed from four quarks
and an antiquark, ¢°g, Among the many possible SU(6) and
SU(3), representations of ¢* configuration is

, [31] (1, 1y IZ>
7 (0, S gm0 mmons |
It is essential that the SU(3) . representation of the four-
quark state be (10), as the g state has representation (01) .
and the total state must have representation (00).. The

choice of the SU(3) , representation (10),is dictated by the
requirement that it be conjugate to [31].

(25)

To calculate the decay probability of a ¢'g state into a
baryon and a meson, one decouples a single quark from the
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four quark state of Eq. (25) by using the SU(6) Wigner coeffi-
cients and then recouples this quark with an anti-quark to
form a meson. This latter step involves only Racah coeffi-
cients and will not be dealt with here.

Using the coefficients from the table, one has

‘[31] (IO)fIY Iz>
7000, 0 eAv

% (L)/<([£u]> 5 ® <[11<3>%

M agg

[31 ]>
(10)0

<(/1'#') (10)

w09 (10)><(Iﬁ)f (10), (10),>

eA I\IY i 1y

XH 1)

b e,

? (10)(‘ % Ii.,v
(26)

The physics requires (1'u"), to be a color singlet, (00). The
only SU(6) representation of three quarks which contains a
color singlet and will connect with [31] is [21]. The SU(3) ,
representation is then (11) ;, or an octet. Hence, one has
immediately the selection rule that the state, Eq. (25), will
not decay into the decuplet plus a quark. Equation (26)
becomes

\/—3_\/2(”)!‘ (10) (10),)
30 Y oy iy

1211 DAL (1) (10) \Jr e
X[ 700, 4 >|" (10), 1 >],
+ terms with (A'u"),54(00),

The SU(3) Wigner coefficients which determine the decay
rates to the various members of the baryon octet are easily
evaluated.'*®

Although the above example is straightforward, more
involved problems may be performed in an identical manner
with the use of the SU(6) Wigner coefficients tabulated here.
Similarly, calculations involving several quarks coupling to
several antiquarks may also be done by constructing several
particle fractional parentage coefficients from the ones tabu-
lated here."

APPENDIX

Jaffe has obtained an equation with which to evaluate
the expectation value of the Casimir operator C,(6) of SU(6).
It requires a knowledge of the reduction of SU(6) into its
subgroups SU(3) ® SU(2), and is a generalization of the tech-
nique used by Frobenius? for the symmetric group. The ex-
pression obtained by Jaffe is unsatisfactory in many cases as
it involves a summation over all the representations of
SU(3) ® SU(2), of which there may be many, and which may
not be known, although from the present work the reduction
is complete for the cases of nine or fewer quarks.
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We derive here in the standard manner an expression
for the quadratic Casimir operator of SU(n). In terms of the
n*—1 generators of SU(#), the Casimir operator is

Ci(m)=Y CupC pas (A1)
where C «p are the traceless generators of SU(n):
Cap=Cap L 8w Tr(C 1)- (A2)
n

The C ,; may be divided into three categories:
raising @ < 3,
lowering a > 3,
weight a=p.

Acting on a state of highest weight, the raising operators give
zero, and the weight operators

EQQ,HW>:Eaa’[ﬁ"'fn ]>:fa,[ﬁ'"fn ]>i (A3)

where the HW indicates a state of highest weight. Hence,

cz<n)|HW>=[§ (¥t 3 CaopCpa W)

= [2 €+ 3, (Cou=Cy) [ W

a<f3
(A4)

by virtue of the commutation relations. Thus, we obtain

C firfu]) = { S f2 7‘—( zmz}

[n/2}
+ S 122 —f s )Ds
a=1

(AS5)
where [#/2] is defined to be the integral part of n/2.
Using Eq. (AS5), one obtains immediately:

SUQR): S=4(/i—f), CA)=25(S+1);
SUQB): A=fi—f,
“=f~f,

CO)y=H+ @ +Ap+ 34+ 3pu);
SU6)y: C(0)=3 f p —HY f
+5( iSO+ =S+ —fe

To obtain Jaffe’s value for C,(6), one must multiply the
above expression by 4,
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Geometrical optics in dispersive media is rigorously derived from Maxwell's equations by employing the
two-timing method. An effect analogous to Faraday rotation is found for the polarization plane of the
wave, with the vorticity of the medium taking the place of the magnetic field.

INTRODUCTION

Geometrical optics describes radiation propagating
through a medium in terms of rays along which the energy-
flux propagates (at least in isotropic media).' In its essence
geometrical optics consists of three basic assumptions:

(i) The existence of a congruence of curves called
‘GrayS'Q!

(ii) A conservation equation for the fields square ampli-
tude along the rays.

(iii) A transport law for the “polarization vector” of the
field along the rays.

In the case of radiation propagating in vacuo the transi-
tion from Maxwell’s equations to geometrical optics is easily
achieved with the help of an expansion in terms of asymptot-
ic waves.? A similar result can be derived in the case of a
purely refractive (nondispersive) medium by using the so-
called “‘optical metric.?*”

In the case of dispersive media no such rigorous transi-
tion was available. An early attempt to overcome this diffi-
culty is due to Madore.* However Madore’s approach is not
based upon a systematic approximation procedure, but is
heavily dependent on a definition of plane wave in a curved
space which seems ““ad hoc.” The problem was recently con-
sidered by the authors in the case of an electromagnetic wave
propagating in a simple dispersive medium.’ In this paper we
extend our previous results and treat in a detailed and com-
prehensive way a more general case.

In Sec. 2 we explain the basic mathematical technique
which is essentially the two-timing method. Then we discuss
in detail the case of a plasma that can be treated as a perfect
fluid (a case which is frequent in astrophysics). Finally we
solve the oscillatory initial value problem for the fluid coup-
led to the electromagnetic field. This final result shows the
mathematical reliability of the method.

In Sec. 3 we turn our attention to the physical interpre-
tation of the results. First of all we show how to derive the
laws of geometrical optics from the transport equations for
the zeroth order fields. A new result appears in connection
with the transport equation for the polarization vector. It is
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found that the polarization plane rotates by an amount de-
pendent on the fluid’s vorticity, an effect which could be
important in astrophysical situations. Also we compare this
result with what is known in the case of purely refractive
media.

Finally we show how the standard Faraday rotation
can be easily incorporated in this formalism. We note that
the topics treated in the present paper are not of a purely
academic interest, but have some bearing on astrophysics.

In fact the propagation of radiation in relativistic dis-
persive media occurs quite naturally when dealing with ra-
diative transfer in accretion discs around black holes.*

1. NOTATION AND CONVENTION

Space-time .# is assumed to be a four-dimensional
pseudo-Riemannian manifold with metric signature + 2.
Latin indices a,b,-, etc. run from O to 3. \7,. d and & denote
the operators of covariant derivative, exterior derivative,
and exterior coderivative, respectively. 4 * means taking the
adjoint, e.g., *B,=(1/31)1,,,.48"¢ where 7, is the volume
element 4-form.

2. GENERAL FORMALISM

In this paper our considerations are purely local. By
introducing the electromagnetic field 2-form F, F=F,,
X dx® A dx”, Maxwell’s equations in the presence of charges
and currents write

dF=0, (1)

d*F=j, 2
where j is a 3-form representing the electromagnetic 4-cur-
rent. Equation (2) can also be written in the form

SF=vy, (29

—1
where y= " j.

Now we construct a suitable model for the medium. We
make the following assumptions: (i) the medium consists of
two noninteracting components, the ion and the electron
component; (ii) the energy-momentum for the electron com-
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ponent is that of a perfect fluid, i.e.,
Tuh:ﬂu()ub+p(gul)+u(,ub)’ (3)

where u, #“, and p are the energy density, 4-velocity, and
pressure of the electrons; (iii) because of the larger proton
mass the ionic component remains unperturbed in the pres-
ence of the wave.

From assumption (1) it follows that the electron and ion
number are separately conserved.

Assumption (ii) means that we neglect any dissipative
effects in the electron fluid. In particular the heat conduction
term is omitted in the energy-momentum tensor. y is given
by

Y =d4mre(nu‘ —n,u?), 4)

where ¢ is the electron charge, n ;, u ¢ are the ion number
density and 4-velocity, and # is the electron number density.

The final equations are (1) and (2) with y defined by (4),
together with the equation of motion for the electron
component,

V. T® =enF"u, (5)
where the electron number conservation equation,

V. (nu®)=0. 6)
To these we must add the normalization condition on the 4-
velocity ©°,

uu’=-—1 @)

Now we linearize equations (1)«(7) around an unper-
turbed state with F=0. In the next section we show how a
background electromagnetic field can be incorporated in
this formalism. If we denote by F, 7, 4, i, and j the perturba-
tions to the electromagnetic field, number density, 4-veloc-

ity, energy density and pressure, the linearized equations
give

dF=0, (8)
SF=4np, P =elni®+hu‘), )
7, T +en Fty =0, (10)
8% =0, (11
u, 4°=0. (12)

Now we look for solutions of Eqs. (8)-(12) in the form
of asymptotic waves. We adopt the so-called two-timing
method which has been amply expounded in the literature’
and used in relativity by MacCallum and Taub.?

This method consists of assuming that, in a given co-
ordinate system (x%), the equantities £, A, 4%, i, p are of the
following form: F** = F% (ex < (1/€)@ (ex)),
A=rhlex“,(1/€)@ (ex ©)), etc. The (unperturbed) back-
ground fields g, n, 1%, p, it are assumed to vary on the slow
scale, i.e., their dependence on the spacetime coordinates
(x“) and the scale ratio € is assumed to be of the form
8an(x,60)=G ,(ex),n(x“,e) =N(ex*),
u(x?,e)=U"(ex?), u(x,6)=M (ex), p(x,€) =P (ex),
where G ,,, M, N, P, U° are functions O (1) of the respective
arguments.
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It is convenient to use the auxiliary variables X ¢ =ex ¢,
0=(1/€)O(ex?). For fixed € > 0 the X“ can be interpreted as
“slow” spacetime coordinates. The small parameter € then
measures the ratio of the fast length scale to the slow one. If
we write f=/f(X“,0) and define

9 9
fﬂ‘ax”’ /= 36’

then
J )
_i_—:f,u+laf’
ax“
where
I = a6 _ ae 'y
dx ¢ dx“ ’

is the normal to the wavefront 8 =const.

For the connection coefficients ", (x ?,€) , with re-
spect to the coordinate system (X?) we have

Fabc zefabf’
re be = %G ad( Gape G aep —0 bc,d)’
whence "¢, =0 (€). Henceforth a semicolon will indicate

the covariant derivative computed with respect to the slow
variables X7, i.e.,

A4 b.a =4 b,a _F('baA c*
Also it is convenient to define the exterior derivative operator
d relative to the slow variables X°, i.e.,

do=w,.; ,dX* NdX"A-NdX'",

o=w,., dX"N-NdX"".
Similarly let us denote by 5 the exterior coderivative opera-
tor relative to the slow variables.

Then the basic equations (8)—(11) read in terms of the
slow and fast variables, with [=d8,

INF+edF=0, (13)
,1 .

*(IAN*F)+ed F=4r 9, (14)
1,7 +eT*  +enFu, =0, (15)
—1

(A *P)+edp=0. (16)

Now we assume that the following formal asymptotic expan-
sions hold:

A=Y €l 4, (17a)
q=0
A=Y e, (17b)
g=0
p=> €Dy (17¢)
qg=0
ﬁﬂzifq‘z(q)a’ (17d)
qg=0
=3 €7F (17¢)
q=0
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Substituting into Eqs. (13)-(16) we obtain at the zeroth
order:

I AF =0, (18)
©
*(1 A *i‘)+47r 7 =0, (19)
© ©
aab A ab
I, T +4enF u, =0, (20)
©) ©
(1a%7)=0, @1
©
and for the higher orders one gets:
[Aﬁ(qﬁl) +‘§ﬁ(q)=0’ (22)
*(IA*E ) =8 F o +4m =0, 23)
LT qin®+T o +enF gy ®u, =0, (24)
*IAN*P gioy)+67 =0 (25)

Now we assume the following explicit dependence on 8

ﬁ(O) ab =¥ 0y ap €080, (26a)
Flopa="qa 00+ ¥ sind, g>1 (26b)
Tty ab =S @b €050+ g ap Sin6, (26¢)
i (q)a = V(q) ¢ COSO+ I;'(q)a Sine’ (26d)
A =N cosO0+N g, sind, (26¢)
£ =M ) cosf+M , sind, (26f)
Py =P cosO+P, sing. (26g)

Assumption (26a) corresponds to a linearly polarized wave.

Our first aim is to derive a dispersion relation from the
consistency requirements for Egs. (18)—(21). Equations
(18)—(21) can be rewritten, since *(/ A *o)=/[°w, where o is
any form,

IN¥,,=0, (28)
—1,W o, +4me [nV ,° + N ou?1=0, (29)
1,8 0% +en ¥ o *u, =0, (30)
1,8 0" =0, (30"
nl V4 +N 0 2=0, 31

@319

where £2=1_/° is the local frequency of the wave relative to
an observer at rest with the medium. Also from Eq. (12) we
have

nl ,V 4 +N 0, 2=0,

U, Vi0=0, u,Ve*=0. (32)
From (29') contracting with u, we find N, =0, V()" =0.
From (28) we have

Yo, =IABy (33)

where B, is a 1-form determined up to the transformation
By—B,+Al. We can always choose A such that

B ,u®=0 (339
because one has 2=/ u°£0 everywhere. Therefore, Egs.
(29) and (30) can be rewritten as:
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—1 2B«))” +1° (Bo)L,)
+47Te [n &(O)b +A~7(0)u b ] :O,
(34)
1,8 0, +en2 B ,° =0, (3%)
where,

S0 =@+pV o u’+uV ")

+(M(0) +P o) uu ”+13(0)g””.

Consistently with our Ansatz (ii) we assume the adiabatic
law. Let f=(u +p)/mn be the specific enthalpy, f=(1/m)v,
where v is the chemical potential. Then the adiabatic hy-
pothesis requires

f=mfh, p=mnf. (36)
At the zeroth order Eq. (36) can be written
M o =mfN . (36"

By contracting (35) with u, one rederives the standard con-
servation law, Eq. (31"). Then (35) can be rewritten as
follows:

mm2 V o," +P o, (Qu’ +1°)+en2 B (,* =0 (37)

and substituting back into (34) we obtain
[iﬂ2—47ren ] Vo' + [—E— P o, +4me N ]u b
e en
m Y
—[—flaV(o) + ——P(O)]["——-O. (38)
e en

Contracting Eq. (38) with u, yields:

(P+2) P oy +4men N o +mnf2 (I, V 4,*)=0.

(39

Now, for any reasonable equation of state we have

p=KHn, (40)
where K is some scalar function of the unperturbed state. At
the zeroth order (40) reads

P oy =KN . (40")
From (31), (39), and (40’)~it follow§ that in order to have
nontrivial solutions for /,V;,,“ and N,

K (P+02%)+4me’n —mfl122=0. (C3))
Equation (41) can be written in the orthonormal Lorentz

frame at a given spacetime point. Then /= —2°+3{ (/ )}
in this frame. It follows, dividing by 2540, that

3 (1. 4me’n

e .QZ

Now we take the high frequency limit of Eq. (41), 2— .
We know that in this limit the rays are null geodesics, i.e.,

2} (1, ;=12 It follows that
K=mf 42)
which, after substituting back into (41) yields

K mf+ =0. (41")
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4 2
=L (43)
mf
Again, substituting back into (38) we find
(8men) V(O) b—p,

IZZH

which yields ¥, ” =0, leading in its turn to N o, =0. There-
fore, we reached a contradiction which can only be resolved
by assuming that Egs. (31'), (39), and (40) admit only trivial
solutions, i.e.,

[V =0, Ng =0, Pg=0. (44)

Finally, from (44), (38), and the requirement 17(0)” we reob-
tain (43) as a dispersion relation, i.e.,

2
P dmen . “5)
mf
Remembering that /,=@ ,, Eq. (45) is then the exact analog
of the eikonal equation. Likewise, it can be solved by the
method of characteristic curves. Let us define the rays

X _ja_gwg . (46)
dr
Then one has, for the rate of variations of @ along the rays,
2
de® =_(47re)_n__ (47)
dr m/f

which can be solved for @ once the initial value has been
assigned on an initial hypersurface X transverse to the rays.

Now we are ready to derive the transport equations for
the field quantities. For this we resort to Egs. (22)-(25),
which read, after having substituted (26a)—(26g):

~ AWy +d P, =0, (48a)

1 /\W(q+1) +d W(q) :O, (48b)
_law(q+l)ab+i/(q)ab;a

+ame[n VP +N . ,u"]1=0, (49a)
lali}(qv*rl)ab—*—q/(q)ab:a

+ame [nV gy, +N g nu’1=0, (49b)
1S iy S T ten ¥ gy u, =0, (50a)
1.S ™ +8 P ten¥ 1, u,=0, (50b)
=l Vi =Ny

+[nV i +N 11, =0, (51a)

L Vgon +N g2+ [V " +N gu ], =0.

(51b)
The solutions to Egs. (48) can be written in the form
¥ =dA,+I AB ., (52a)
¥ oy =—dB g+ A 1), (52b)
where 4 @ B () are 1-forms, with 4 ;, =0. We recall that
¥ o, =l ABq, ¥ =0

Now we prove the following proposition.
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Proposition: We can always choose 4 (), B (,, such that
1°4 . =1"B 4, =0.

Proof: We proceed by induction. 4 ,, and B (,, verify
the above condition, that is easily seen by contracting Eq.
(37) with [ ,,. Suppose that 4 ), B, verify
1“4, =1"B,=0.Thend ., and B, aredefined
up to the transformations

(g)a

‘4 (‘I'FI)A‘)A (q+1)+/1[’ B "‘)B(q 1) +/{1

(g+1)"

Because 2= g“*/ 1, 0 we can always choose A such that

1“4 ., =1"B 1, =0. QED
Then Eqs. (49) yield for ¢>0
2D 4 (q)b +lu:aA (q)b ——IbA (q)u:a ~IZB(q+ l)h

"%B(qf 1)5;0 a -B(qwl)a;b;a

+ame [nV " +N o nu®]1=0, (53a)

2DB(q)b—+—l“;aB(q)b
—IPB A gy A )
—A " o taTe [nV g0 N gy 1=0,
(53b)
where D= _/* is the derivative along the rays and we set
B y=4..=0.

Now we consider the zeroth order equations. The zeroth
order quantities are:

V=0, (54a)
7 a __ e a

Vi =— m—fB(O) ) (54b)
Ny =N =M =M , =0, (54¢)

4 " =0. (54d)

From (50and (51) weobtain ¥ ),V (1, ;N (1, in terms of
A4 (0B ()4 (1B (1) Then, Eq. (53a) gives an identity
whereas (53b) yields, after some manipulations,

2

2DB(0)b+la;aB(0)b_E&B(O)awab

+term parallel to u ® and /® =0. (55)

By contracting Eq. (55d) with B b we obtain the transport
equation for the square of the amplitude

2 __. b
B(f)) '_B((J) I)B(O)

DB(0)2+la;uB(O)2:0 (56)

which is the standard amplitude-area law of geometrical
optics.

Now we write B 4, =B e, withe ,e * =1.¢" isthe
polarization unit vector of the wave. Also, at each spacetime
point we introduce an orthonormal tetrad
fuswvee (1)‘“ € (2y“}, v is the wave’s propagation unit vec-
tor in the fluid’s rest frame,
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4 u”

- P+ 0227
e y” and e ;) * are two spacelike unit vectors, orthogonal to
each other and to u *,v?. At each pointe ;,? and e ;) * are
defined up to an orthogonal transformation. We exploit this
arbitrariness in the definition of e (,,“ and e (;,“ by choosing
them to satisfy

e De,,=0. (58)

, (57

Since e “ lies in the 2-plane spanned by e, and e ,,* we
write

(a) _ a ; a
e'=cos¥e,* + sin¥e "

Then, contracting Eq. (55) with e ;,“ and using the condi-
tion (58) yields

2

!
2DV + —wPe y 0 =0. 59
of @€ Myb (59)

Equations (56) and (59) determine B b completely once
the initial conditions are assigned on a hypersurface Z,
which is transverse to the rays. In this way we can solve the
initial value problem for the set of Egs. (8)—(12). We assume
that on the hypersurface 2' 4, and B, have been given
with ¢>0, together with the initial value for the phase @.
Now we determine B ), © in a neighborhood, Z, of =
where the rays do not intersect (absence of caustics) by inte-
gration of (47) and (59).

Finally we solve (53) recursively for 4, and B ,, in
termsof 4 ,_,, and B, ,,. That this is possible is shown in
tlle apgendixj where it is also shown how N @> V(q) M @°
Ny Viy M, are known in terms of 4 @B There-
fore, we have obtained a solution to the system (8)—(11) in
terms of a formal series.

3. FARADAY ROTATION AND CONCLUSIONS

In this section we take into account Faraday rotation.
In many astrophysical situations the background plasma is
also endowed with a magnetic field. Equation (10) is then
replaced by

Vaf“b+eﬁF“bua+en1:"’”ua+enFablia=0» (10°)

where

Fop=0upcaBu?=Bf, (602)
with

B =Bm*®, m,m°=1. (60b)

Now we assume that the magnetic field is so weak that it does
not affect the dispersion relation (43). That is

enF* =0 (¢)

we take this into account explicitly by rewriting Eq. (10') as
follows:

Vol +en Fu  +e(enBf*) i, =0. (61)

In this way we obtain a modified set of Egs. (8), (9), (61),
(11), (12) which we subject to the same analysis as before. Of
course we reobtain the same dispersion relation (43). The
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propagation equation, however, reads

w? eBw?
2DB(D)”+l“:aB(0)b~5}B(O)aw”b+ mﬂfp

+terms lying in the 2-plane spanned by u * and /°.
(62)

b
fll B(O){l

Again, contracting (62) with B ,° we obtain the usual
conservation law (56).

Now weintroduce thetetrad { u “,v%,e ;,%,e ,,°} asin
Sec. 2. Let « be the angle between the vorticity vector
w® =117y ,» ., and the unit vector +*. Similarly, let @ be
the angle between the magnetic field B¢ and v*. Proceeding
as in Sec. 2, Eq. (62) yields:

2 w?
DV¥V—- —2 @ cosa=wy —2 cosg, (63)
20 207

where w ; =eB/m is the Larmor frequency, and
o=(w’w,)"* is the vorticity scalar.

From (63) we see that the effect of vorticity on the po-
larization angle is analogous to that of Faraday rotation.
More precisely, the effect of the vorticity vector is equivalent
to that of a magnetic field forming the same angle & with the
propagation direction and of strength B=(m/e)fw.

In a realistic situation both the “vorticity effect’ and
Faraday rotation would be present. The ratio of these two
terms is

of

D p

and for the vorticity effect to be important a high angular
velocity and an ultrarelativistic fluid (o> 1, /> 1) are re-
quired. This situation might occur near a rapidly rotating
black hole. The equivalence between the vorticity and mag-
netic field is easily understood in simple physical terms in the
case f=1. In fact, in an electron gas imbedded in a magnetic
field, the electrons revolve around the field lines with an
angular velocity @ . Therefore, a right-handed circularly
polarized wave sees a different refractive index than a left-
handed one. This is the physical cause of Faraday rotation.
Of course the same effect would be achieved if the electrons
were constrained to revolve around the same lines with the
same angular velocity w =wp, in the absence of a back-
ground magnetic field.

Now we give a simple example. We consider a homo-
geneous electron fluid in special relativity. We assume that
the medium is endowed with a uniform rigid rotation @
around the z axis and that the wave propagates in the xz
plane. In the absence of a background magnetic field Eq. (63)
reads

7 ~(s7)
—> ={——| cosa,
do 20

where o is defined by
dx* _ Ll”.
do w 2
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Therefore, for propagation perpendicular to the angular ve-
locity vector there is no effect. For a wave traveling in the z
direction the effect is maximum. In this case

dz 2

do @

2 ’
o
where N=(1— @ ] /(%)"* is the refractive index of the medi-
um. After the wave has traveled a distance L, its polarization
plane is rotated by an angle 4 which is, in physical units,

30=(") g ()

c /2N \»

We see that the effect is likely to be important for sources
attaining relativistic speed, V' ~wL ~¢. Finally we compare
our results with those derived by Pichon in a completely
different context.’ Pichon treats the propagation of weak dis-
continuties in a purely refractive medium, thereby excluding
any dispersion. Let us define a phenomenologicai refractive
index N=(1+//0%"*. Then Pichon’s propagation equa-
tions n.(101) reads

2K‘IVaeb_ea(VaKb ”_VbKa):O’
where
K,=l,+(N -2 u,.

(64)

If, proceeding as in Sec. 2, we write
[, =cosWe, ,+sinW¥e,,

wheree ,,, and e ;) , are both orthogonal to each other and
u?,1“, and furthermore e ,,"K “</7, € (1, =0, then (64)
yields
.,

2K 7 W+ Ew €2y €1y b=0- (65)
which is formally analogous to our Eq. (59). The only differ-
ence is that in Eq. (65) the vector K ® appears in place of /¢.
This occurs because dispersive effects are neglected in Pi-
chon’s analysis. In fact, when dispersive effects are taken
into account, albeit in a phenomenological way,* the relation
between the rays’ tangent vector K ¢ and the phase gradient
[ is given by

ON

Ke=1"+(N~DR u“+N —— Pu" 66
+( 2 u a0 P (66)

which, in the particular case N*=1— w 2 /{2* gives
K G :[U

Finally we conclude with a remark on some cosmological
applications. The theory developed in this paper could possi-
bly be applied to the microwave background radiation prop-
agating in the cosmological plasma in a rotating Bianchi uni-
verse, thereby obtaining an estimate of the resulting
polarization in the microwave background. From the obser-
vational upper limits on the amount of polarization one
could then infer upper limits on the present vorticity of the
universe.

APPENDIX
Theorem: The system of Egs. (53) together with the ini-
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tial conditions 4 () =B _,* =4 (,,“ =0 can be solved
recursively.

Proof: For the sake of simplicity we limit ourselves to
the case when the matter can be described by dust, i.e.,
T ., =p u ,u ,. The extension to more general forms of mat-
ter is straightforward. First of all we express V', ,°,
N Ve Ny intermsof 4 ), B, g<p+ 1.
From Egs. (50) after some manipulations we obtain:

Viorn —plﬂ—{ucfw)“c.aub
+S o aten ¥,y Pu,l, (A1)
P e = — ——{u S % ou®
J7x¢)
+8 P aten ¥, 1, Pu,l, (A2)
and from Egs. (51):
N(p+1)=bl—[_nlay(p+l)a
+[1V ) +N 1ol (A3)
N(p+1):"l—{”lul7(p+na
ip)
+[nV(p)°+N(p)u"];a}. (Ad)

Further manipulation of (A 1)-(A4) together with repeated
use of (50) and (51) yields:

1 5 5 en
b b b
nVe.n :E[n Vi ‘u’ g+nu®V i, + -~

e [uaB(p)h;a—uaB(p)a;b+~QA(p4,])b

—1"(4,, 1)"%)]], (AS5)
1 % a a
N(p+]): b“ [n V(p) '+‘N(p)u ];a_ ’{;‘
X in f/(p)”u":alc+nu“ V@)“:alc%- %
X {u Bl ~u,DB "
X _IZ(A(p+1)aua)]]! (A6)
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nl;'(p“)”:——b!—[nV@“u arnucV,t, +——

X [u A4 () —u A (p)b;a +‘QB(p+l)b

’_Ib(B(p+l)aua)]]’ (A7)

\7 1 a a 1
N(p+‘)=——b—[n V(p) +N(p)ll ];G+EZ—

en

[1 Vi uatnu®V e a+—-

X [uDA " —u A l.— (B, 1 Ha)] ] ’

(A8)
Let us indicate by O (p) a quantity containing terms of the
kind4 ., B ,, with g<p only. Then, by inspection of (A5)~
(A8) one finds:

nVe'= i: [A(p) ”—l (4 ) “u )]+0(P~1) (A9)
Np= @ U)+O0(p—1), (A10)
nv ”=5”—[~B b b I°(B )]+(5(p—1),
(p) m (p) ) [f2) a
(Al1)
N(m_“‘%‘l—(l?(p)“ua)-l-é(p——l). (A12)

Substituting into Eq. (53b) yields

2DB(p) +1°.,B @ b__pb By
4
+ =2 [ Vir'u’atnuV’ .l
47ren u
(u(rB(p) uaB(p) ’h)
l _ -

+ 1Ay u) + ™ =, +0(@—1=0,
with (A13)
._.:-(p):[ﬂ I7(p)a+N(p)u ]a

1 7 a, ¢ avyy c
_?)—[}2 V(p) U ;01C+nu V(p) ;alc]

en c.a a
—Tnf[uaB@’lc—uaDB(p) ]
+ E{:—IZA@H)"ua. (Al14)
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Let us define

W(p)EA(p)bub, Z(p)EB(p)bub (AIS)

Now we contract Eq. (A13) with « ® and get, after some
algebra,

2DZ ) ~2B " Du ,+1

4re _
4P W(p+1)————;)ri:(p)+0(p—l) 0. (A16)

a;aZ(p) —2B (P)a:a

Contracting (A13) with /? yields

—2B)"Dl, B )"+ i}’)—e

X[—-—B(p) wt 1+ 1,Dub £
m m m

1 e e
X\—IPZ ) u+—RB ", u®— ———y°Dl ]
({) w), m @ P mif2 “ “

4re?
" en

~ [-u°B"l,, ~DZ , +B,"Du,]

r -
+ 5 Wi +H4me 5 ) +0 (p—1D)=0. (A17)

Equations (A16) and (A17) can be solved for W, . |, and
= - After substituting into Eq. (A 13) one gets, having used
(A9),

2D B )" +1° ,B (" +G +0 (p—1)=0,

where G is a quantity linear in B, and containing terms
likeZ ,,-

Therefore, in order to solve (A18) we must determine

V4 (p) In order to do this we consider Eq. (5 3a) for the value

— 1 of the suffix. By contracting with u® wegetZ @ in
terms of quantities which are O (p — 1) Substituting back
into (A18) we can then solve for B ® along the rays, in
terms of the initial values of 2 and of quantities of the kind
O (p—1). An analogous argument can be applied to Eq. (53a)
and leads to similar results.

(A18)

'J.L. Synge, Relativity: The General Theory (North-Holland, Amsterdam,
1960).

‘J. Ehlers, Z. Naturforsch. 22a, 1328 (1967).
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Exact occupation statistics of two- and three-dimensional

lattices of mixed single particles®

Eizo Miyazaki

Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152, Japan
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General expressions are derived which exactly describe the ensemble average number of two or three-
dimensional structures per arrangement, created when mixed single particles are arranged on a pure or a
mixed lattice. The expressions obtained are applied to the calculation of the number of various mixed
nearest-neighbor pairs which are important for various phenomena in multicomponent systems.

I. INTRODUCTION

It was shown in a previous paper' that V,, the exact total
number of partial structures created when g indistinguish-
able single particles are arranged in all possible ways on a
lattice of NV equivalent sites is given by

N, ZUZ(N—Z )
g—a

— o, —2)! , M
(N—g—z+a)g—a)
where a denotes the number of particles included in the par-
tial structure consisting of z sites and o, is the number of
distinguishable ways of placing such a structure on the lat-
tice. Thus the exact ensemble average number of the struc-
ture per arrangement, 7, is obtained as

)

These quantities are required for a statistical treatment of
various phenomena and have recently been applied to a
problem of the heat of adsorption of gas molecule on two-
dimensional lattices.>

The purpose of the present paper is to derive further
general expressions which describe the exact ensemble aver-
age number of the structures created when mixed particles of
distinguishable single particles are arranged in all possible
ways on a pure lattice consisting of indistinguishable sites or
a mixed lattice consisting of distinguishable sites, i.e, of dif-
ferent kinds of several sublattices. The expressions obtained
are then applied to the calculation of the number of mixed
nearest-neighbor pairs which appear on two- or three-di-
mensional lattices. This knowledge is also required for a sta-
tistical treatment of various phenomena of multicomponent
systems such as alloys, adsorption of mixed gas molecules,
and catalytic chemical reactions on multicomponent solid
surfaces.

Il. GENERAL EXPRESSION FOR MIXED
PARTICLES ON PURE LATTICE

As described previously,' when ¢ indistinguishable par-

«This work supported in part by RCA Research Laboratories, Inc.
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ticles are arranged in all possible ways on a lattice of N equiv-
alent sites, a given structure consisting of a particles plus
z—a vacant sites and occupying a particular position on the
lattice occurs (; ) times because the (g —a) remaining parti-
cles can be arranged in all possible ways on the remaining
N —z sites. Now, we consider a system composed of two
kinds of single particles whose numbers are given by ¢, and
¢,. When g, particles are arranged in all possible ways on N
sites, a given structure consisting of @, particles plus z—a,
vacant sites and occupying a particular position on the lat-
tice occurs (q‘ (J times. When ¢, —a, particles are arranged
on the remaining N —z— (g, —a,) sites, further

<N~Z~(qx —ay) )

q.—Q,

distinguishable ways occur for each of the (q‘ " ) arrange-
ments. Hence, the total number of the structures consisting
of @, +a, particles plus z— (a, +a,) vacant sites and occupy-
ing a particular position on the lattice created when g, + ¢,
particies are arranged in all possible ways on /V sites is given

by
(N—z )(N—z—(q:—~al) ) (3)

g,—a, q.—Q;
From the similar arguments, when ¢ mixed particles of v
kinds are arranged in all possible ways in a lattice, the total
number of given structures of z sites composed of a particles
plus z — @ vacant sites which appear at a particular position
in the lattice becomes

N—-z \(N—z—(g:—a)
(ql—al)( §:— )
(N—Z—(ql—as)w“— g, —a, .1)>
x q,—a,
=
v N— - - <
z kgl(Qk ay) , @

j=1 _ )
q9,—4a;

where g=3/"'g, and a =¥/~ 'a;, There are o, distinguish-
able ways of placing such a structure on the lattice and the
quantity (4) is independent of the position for the present
case of single particles, i.e., A =1, where A refers to the num-
ber of contiguous lattice sites occupied by a particle. There-
fore, N, the total number of such structures created when ¢

© 1979 American Institute of Physics 184



mixed particles of v kinds are arranged in all possible ways
on N equivalent sites is
j=1
v (N”Z‘— Z (qk_ak))
k=1 .

N.=o,]] (5)

z
j=1
9,

On the other hand, W, the total number of distinguish-
able ways in which ¢ mixed particles of v kinds are arranged
in all possible ways on a lattice of V equivalent sites is given
by

M

N—-9g) qu!
=1

L (N='S g,
=H( kglq‘). (6)
i=1

9,

W=

Thus the exact ensemble average number of the structures
per arrangement, 7, is

which leads to

n,=o,lqg@—D(g—a+1)] [g.(g:—q1)-

X(q:—a:+1) 1[g.,(qg,—D(g,—a,+1)]

X(NVN—-q—qa——q  JN—qi—g——¢q,—1)
wN—gi—qs— o —q, —2+0 ++a , +1)
X[NNVN=DWN=2)(N—z+1) ] (8)

for N=£ iqj, and
j=1

n,=o,[g(g— (g —a+1) ][gg.— 1)
X{g:—a+1)]+[g. (g, —1)(qg,—a,+1)]

XININ=-DN-2)(N—z+1) ]! )]

for N= iqj.
j=1

J

. MIXED NEAREST-NEIGHBOR PAIRS ON
PURE LATTICES

In this section we consider the ensemble average num-
ber of several mixed nearest-neighbor pairs per arrange-
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ment, created when mixed single particles are arranged in all
possible ways on a two-dimensional (R X S )-rectangular lat-
tice and a three-dimensional (R X §X T )-rectangular para-
llelelpiped lattice whose three axes are composed of R, S, and
7 sites.

A. Mixed nearest-neighbor pairs on (A X S)-
rectangular lattice

o, for a similar (r X s)-rectangular structure forming on
the lattice is given by’

o,=(R—r+1DES—s+D+R—s+1)S—r+1) (10)

for r=~s. Hence, for instance, the exact ensemble average
number per arrangement of mixed first-nearest-neighbor
pairs of different kinds of particles 1 and 2 (n,,), numbers of
the mixed third-nearest-neighbor pairs with (#,,,) and with-
out (n,,,) intervening particle created when g mixed particles
of v kinds are arranged in all possible ways may be derived
respectively by setting [r=2, s=1, a;=a,=1, @;=0(/=3,
4,-)Llr=3,5=1, a,=2, a»=1, a;=0(j=3, 4,--,v)] and
[r=3,s=1, ai=a,=1,0,=0(=3, 4,--,v)] in Eq. (8) and
(10) with N=RS and z=rs, as

q.9;
=2(2RS—R—-§) ——F———, I
n =2 ) (an

g(g—g: (12)

=2(2RS—2R—2S ,
=2 ) RS(RS—1)(RS—2)

and
RS(RS—1)(RS~-2)
where the factor 2 prior to the brackets in (11)—(13) arises

from interchangeability between the particles 1 and 2 in the
mixed nearest-neighbor pairs.

ni0y=2(2RS—-2R-2S5)

Further, the o, for a linear array of » contiguous sites
along diagonals is given by’

o,=2R—r+1)({S—r+1). (14)

Thus, 7 |,, the exact ensemble average number of the sec-
ond-nearest-neighbor pairs (i.e., the first-nearest-neighbor
pairs along a diagonal) per arrangement is obtained by set-
ting [z=r=2,a,=a,=1, a; =0(=3,4,~-,v) ] in (8) and
(14) as

C_ 4.42

n,=4R~1}S-1) RS(RS—1) " (15)

The ensemble average numbers of these nearest-neigh-
bor pairs per site (n,/N') corresponding to the (11)—(13) and
(15) lead to 46,6,, 487, 46,6,(1 —6), and 48,8,, respectively,
in the limit as R and .S approach infinity, where 8 denotes
surface coverage defined by §=¢/RS and 8, =¢ ;/RS.
These limiting quantities have been used in the term of
“Langmuir-Hinshelwood mechanism” for kinetical analy-
sis of catalytic reactions involved in several kinds of ad-
sorbed species on a solid surface. Now I have derived the
exact relations which are particularly useful for the analysis
of surface reactions on crystalline lattices so small that the
sites of corners or edges in the lattices cannot be neglected.
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B. Mixed nearest-neighbor pairs in a (R xSx 7)-
three-dimensional parallelepiped lattice

First we consider the o, for a (X s X ¢ )-parallelepiped
type structure forming in a similar type of (R X S X T')-paral-
lelepiped Iattice. In this case, there are
(R —r+1)(§—s+ 1)(T—¢+1) distinguishable ways of plac-
ing the structure in the lattice, of which (R —r+ 1) are of one
kind along an axis among the three axes, and (S—s+1) or
(T—t+1) the other along the second or third axis. Thus,

o, =(R—r+1)(S—s+ I)NT—~t+1)+R—s+1)
XES—r+)T—t+1 )+ (R—r+1)(S—t+1)
X(T—s+ D +R—t+1)S—s+1T~r+1)  (16)

for rs-+t,

O, =R —r+ IS—r+ NT—t+ D)+ R—t+1)(S—r+1)
X(T—r+D)+R—r+ 1)(S—t+1)(T—r+1) (17)

for r==s=%4t, and
o, =(R—r+I(S—r+1)(T—r+1) (18)

for r=s5s=1t. Hence, the exact ensemble average number of
the mixed first-nearest-neighbor pairs of particles per ar-
rangement, 1, ,,, created when g particles of v kinds are
arranged in all possible ways in a (R XS X T')-superlattice
(i.e., N=3/""q) is obtained by setting [r=s=1, 1=2,
a,=a,=1, ;=0 (j=3,4,--,v)] in Egs. (9) and (17) with
N=RST and z=rst as

) —2% (19
RST(RST—-1)
Further, the o, for a linear array of r-contiguous sites
along diagonals through the second- or third-nearest-neigh-
bor sites in the lattice is obtained respectively as

0, =2 [(R—r+ 1)S—r+ )T

1 ey =2RST—RS—RT—ST

+(R—r+1T—r+ 1S

S (S—r4+1T—r+DR ] (20)

or
0, =4R —r+ 1)S—r+ )T —r+1), 1)

where the factor 2 or 4 arises because there are two or four
distinguishable directions of the diagonals respectively in the
lattice. Thus, the ensemble average number of the mixed
second-and third-nearest-neighbor pairs (i.e, first- and sec-
ond nearest-neighbor pairs along diagonals) are derived by
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setting [r=2, a,=a,=1, a,=0 (j=3,4,-,v)] in Egs. (9),
(20), and (21), respectively as

Miur12=4[3RST—2(RS+RT+ST)

q.9:
+R+S+T | —2° 22
! RST(RST-1) (22)

and
n ;11.12 =8(R—I(S—1XT—+)

X———qd (23)
RST(RST—1)

where the interchangeability between the particles 1 and 2 is
also taken into account. These quantities (19), (22), and (23)
lead to ¢q.q,/N when R, S and T 1, where ¢ denotes the
coordination number of the corresponding nearest-neighbor
site.

IV. GENERAL EXPRESSION FOR MIXED
PARTICLES ON MIXED LATTICE

In this section we derive a general expression which
describes exactly the ensemble average number of the struc-
tures created when ¢ mixed particles of v kinds are arranged
in all possible ways on a lattice composed of k different kinds.
This is closely associated with order-disorder problems in
alloys.

When N, is the number of sites of the sublattice of ith
kind and ¢, the number of particles of jth kind which occupy
the sublattice of ith kind, W (the total number of distinguish-
able ways in which ¢ such mixed particles of v kinds are
arranged in all possible ways on the lattice consisting of «

sublattices) is given by
N !

i

SN, =Se e
j=1 j=1

=fIH(N"*kZ1q"*). 4)

P=lj=1
qf.k

w

From the similar arguments to those described in Sec. I1, the
total number of given structures composed of z sites ap-
peared in such W arrangements is obtained as

N,~z, )(Nl—zl—(qm*am) )

N,=0, (
G151 — Ay g2 — Q)2

v 1
Ni—z— 2 (g ix—ayy) ( Ny—z, )
k=
! an‘azn

q 1.v —a 1,v
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G252 — Uy

v—1
% (Nz “‘Zz—(%u—azn)) (Nz—zl” 2 (qz,k _az,k))
seo k=l

q 2,v —a 2,v

(NA'—ZK)(Nxbzx-—(qx,l—ak,l))
X
G 1 — X 9ux— X2

v—1
(NK_ZK_ Z (qK.k __ax,k))
ree K=1
qK,V—_aK,V

.NE*
=

Il
<
I

Ni—ziji:l (g —aix)
=t ’ (25)

q;;—q;;

where z; denotes the number of sites in the structure which
occupy the sublattice of ith kind and a, is the number of

particles

of jth kind contained in the z; 51tes, therefore

zvzz and = EZa,J

i=1j=

Thus, the ensemble average number of the structures of

Zz sites pe:

r arrangement in this case is expressed by

a H H (9:49:,—

i=lj=

X(qu_aiJ+1)][(Ni—qi)(Ni—qi_l)"'
X(N;—q,—z,+a;+ D[N (N,—1)-
X(N,—z,+1) 17, (26)

where g ;

zquanda —Za,d,and when N,=¢, (i=1,

j=

2,00,K), (26) leads to
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IIH (9:(q:5—

X(q;;—a;;+1) ][N AN;~1)-

X(N;—z;+1D]™" 27

Now we apply the expression (27) to a binary alloy of a
NaCl type rectangular (R X S X T )-parallelepiped. In this
case the ensemble average number of the mixed first-nearest-
neighbor pairs of particles per arrangement is obtained by
setting [k=v=2, N;=N,=v/2,and (@, ,=a,,=1,a ,
=a,,=0)or(a,,=a,, =1,a,,=a,, =0)]in (27) witha,
=3RST—RT—ST—RS as

(3RST—RS—RT—ST) (q 1,19 2,2 n q1,29 2. )
NN, NN,
If we introduce the term *‘degree of long range order” s”, then

we have

(28)

(1+s") _ 9 92 and
2 N, N,
(1—s") _ 912 _ Qz,l. 9)
2 N, N,
Using these relations, (28) leads to
(BRST—RS—RT—-ST)(1+s5%)/2, (30)

which is the exact expression of the ensemble average num-
ber of the mixed first-nearest-neighbor pairs of particles de-
rived within the framework of random distribution. The
quantity (30) gives 3NV (1 +5%)/2 in the limit as R, S, and T
approach infinity, which is equivalent to the value derived
previously by approximate method.’

'E. Miyazaki and 1. Yasumori, J. Math. Phy. 18, 215 (1977).

‘E. Miyazaki, Proc. 7th Intern. Vac. Congr. & 3rd Intern. Conf. Solid
Surfaces (Vienna, 1977), 1, 807 (1977).

‘For instance, R. H. Fowler and E. A. Guggenheim, Statistical Thermody-
namics (Cambridge. U. P., Cambridge, 1960).
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Multipole wavefunctions for photoelectrons in crystals. IV.
The irregular functions and the matching to an impurity?

G. Strinati
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Extension of the method of partial waves to scattering by an impurity center in a crystal requires the
construction of energy eigenfunctions of the unperturbed crystal that are irregular at the center. These
irregular solutions of a nonseparable problem are constructed by utilizing the expansion of the Green’s
function into the regular solutions symmetry-adapted about the impurity center, which have been obtained
earlier. The wavefunction within an impurity can thus be continued throughout the surrounding crystal by
matching it at the impurity boundary to a superposition of regular and irregular solutions. This procedure

is compared to the current EXAFS treatment of photoabsorption.

I. INTRODUCTION

This paper develops a mathematical framework for
matching the wavefunctions of a localized impurity and of
its surrounding unperturbed crystalline medium. The
matching constitutes the interface for connecting atomic
and band properties. Our method extends to crystals the par-
tial wave expansion which is familiar for spherical symme-
try. This paper deals with certain aspects of the solutions of
the Schrodinger equation with potential fields that possess
point group symmetry about an impurity center as well as
translational crystal symmetry except for the presence of
this center.

We divide the crystal into an internal region where the
perturbing potential is effective, and an external region
where the crystal is unperturbed. In previous papers'™ we
considered a complete set of solutions in the external region,
symmetry-adapted to the point group, which remain bound-
ed when continued into the center of the internal region. For
this reason we call them regular multipole wavefunctions.
However, the matching of an impurity wavefunction and of
its normal derivative at the boundary of the internal region
requires also the knowledge of the corresponding set of irreg-
ular multipole wavefunctions, that is, of functions which
would become singular when continued into the center of the
internal region. The construction of these irregular functions
constitutes the main task of this paper.

The regular multipole wavefunctions result from a uni-
tary transformation of the Bloch waves with real k vectors,’
analogous to the construction of the spherical Bessel func-
tions by superposition of plane waves. Irregular multipole
wavefunctions could then be constructed by analogy to the
corresponding construction of the spherical Neumann func-
tions, namely, by the integral representation in terms of
plane waves,

n ,(kr):zljll:l—jc dOsin@ e *°0p (cos@), (L.1)

where Cis a suitable path in the complex 6 plane.’ However,
in the crystal situation the nonseparability of angular varia-

“Work supported by the Department of Energy, Division of Basic Energy
Sciences, Contract No. C00-1674-140.
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bles makes it difficult to identify the appropriate path in the
three-dimensional complex domain of k vectors. Moreover,
even though Bloch waves with complex k vectors can be
defined by analytic continuation,® degeneracies among
bands make their constructive definition unpractical. On the
other hand, the Neumann functions can also be defined by a
Green’s function formalism,” which depends only on general
properties of partial differential equations rather than on the
separation of variables for spherical symmetry. Extension of
this procedure proves feasible.

In spherical symmetry a wavefunction can be expanded
into spherical partial waves in both the internal and the ex-
ternal region. The matching at the spherical boundary can
thus be performed by considering one partial wave at a time,
working with radial wavefunctions only. An equivalent
statement is that the portion of the boundary contained in
the basic domain® in spherical symmetry reduces to a single
point, so that it suffices to perform the matching at any one
reference point on the sphere, the symmetry taking care of
the rest. When the symmetry is lowered to a point group, the
portion of the boundary surface contained in the basic do-
main has finite extension; an infinite number of functions is
then needed to perform the matching for each symmetry
species.

The impurity wavefunction in the internal region could
be calculated by an extension of the cellular method of band
theory, e.g., in the formulation of Altmann et al.’ Alternati-
vely, a variational calculation within the internal region
would apply regardless of nonsphericity of the internal re-
gion, and, most of all, would also enable one to treat the
internal region as a many-particle problem. This approach
to the impurity problem in crystals would thus eventually
converge to an R-matrix calculation.”

Full specification of the impurity potential would re-
quire taking into account the relaxation of the medium about
the impurity so as to screen completely the effect of the im-
purity outside the internal region. This problem exceeds the
scope of this paper and will be treated separately.

The plan of the paper is as follows. Section II summa-
rizes properties of the regular multipole wavefunctions. Sec-
tion ITI solves the one-electron Schrodinger equation with
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an impurity center formally, while Sec. I'V recasts the solu-
tions in a form that holds in the external region only. Section
V introduces a set of harmonics of the boundary of the inter-
nal region. The matching of the impurity wavefunction and
of its normal derivative is treated in Sec. VI. Section VII
compares the present approach with current EXAFS theor-
ies of photoabsorption.

Il. PROPERTIES OF THE REGULAR MULTIPOLE
WAVEFUNCTIONS
This section summarizes properties of the regular

multipole wavefunctions Z2{? (r;E ,) to be used in the fol-
lowing and discusses their analytlc dependence on the ener-

gy E.

The &% functions are obtained by unitary transforma-
tion of the set of Bloch waves ¢, (r;k) with energy E, (k) = £°:

R (RE )

1

- dKS[E—
I-Lﬂ 12 Jo

E,u(k) ] ¢y(r;k)exp(ik't‘u)

dim(I" ")
xS P aE N,

=1

r@iry, (IL1)

where {2 stands both for the Brillouin zone and for its vol-
ume. The coupling coefficients (I" ' /', I" (u)iI7), which were
implied but not explicitly indicated in Ref. 4, serve to reduce
the Kronecker product representation /(i) X I"'(u) being
the one-dimensional irreducible representation of the Wan-
nier function g,(r).* Asin Refs. 3 and 4, we confine ourselves
to crystals with a single atom per unit cell and with the atom
at the cell’s center. The role of the various factors in the
integral of Eq. (I11.1) and the specification of the phase of the
Bloch waves have been discussed in Ref. 4. We need only to
recall here that the functions %#:

(i) are real, that is, they correspond to standing-wave
type solutions of the unperturbed crystal Hamiltonian, H,;

(ii) transform according to the ith row of the irreducible
representation I” of the crystal point group acting at r=0,
that is, at the position of the impurity;

(iii) are normalized according to

Jdr%’(m(rE ) RED(GE" )
=8(E—~E) 8,,8,,8,, (11.2)

where the integration extends over the whole (infinite)
crystal;

(iv) are complete in the sense that

mdx(E,)

zf(E dE S ALRE,) LD (FE,)=8(r ),
min( £, rip

! ! (IL3)

The factor i~ * has been included, as noted in Sec. X of Ref. 4,
to make the & real.
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The # functions have an alternative representation in
terms of Wannier functions*:

RLP(GE )
_Za (r—n) i n+t JIi'Lgdg,

=1

X', @i, (I1.4)
with coefficients (called lattice multipoles)
1
n+t | IN'i'Leg)=
<n+t )| @ =
X f dkS[E—E (k)P ')(k;EH)exp[ik~(n+t#) 1. dLS)
(73
These coefficients converge to zero for any given n
lim Kn+-t JI"i'Lgy . |=0, (L.6)
L "
and for any given L
Kn+t1" i'Lgdy |=0 (1/h). (IL7)
One may also show that
Kn+t/l"" i'Lgy [<[DAE)]*GV(n+t)),  (IL8)

where D, (E) is the density of states of the unperturbed crys-
tal contributed by the uth band per crystal cell, and

G{ '(n+t,) is a geometrical factor. This factorization per-
mits one to show that lattice multipoles with high L have
vanishing amplitude in the proximity of the central cell,
n=0. Moreover, because, for small |r, llm‘,t_,wla#(r—n)l
=0, we expect that the 7 functions with high L will also have
vanishing amplitude for small |tl, say on the boundary of the
internal zone. The maximum value of L, L_, , that one needs
to consider will then depend essentially on the convergence
of the Wannier expansion (11.4).

The series (I1.4) is uniformly convergent over the inter-
val [min(E), max(E,)]. The Z functions are, therefore,
continuous functions of E in that interval and vanish at the
band edges. One can also show that the lattice multipoles
(I1.5) are analytic functions of E within the range of the band
except at critical energies E - where they exhibit singularities
not worse than those of the density of states D (E)." Wecan
consider the Z functions to have the same depcndence onkE
as the lattice multipoles because, for practical applications
the series (I1.4) will include a finite number of terms.

Ill. THE SCATTERING BY AN IMPURITY

Our task is to solve the one-electron Schrodinger
equation

Ho+ V) WD (1)=ew I (1), (IIL1)

where H, is the Hamiltonian of the unperturbed crystal and
V is the perturbing impurity potential. ¥ is assumed to be
nonvanishing in the internal region only, as discussed in the
Introduction, and to possess the point group symmetry of
the crystal about r=0. The discrete index A distinguishes
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eigensolutions with the same energy € and symmetry species
Ii. In this Section we will solve Eq. (II1.1) in a formal way by
adapting standard techniques of scattering theory. In Sec. IV
we will specialize the solutions to a form that holds in the
external region only.

Because the #2 functions form a complete system and
because the perturbing potential ¥ possesses the crystal
point group symmetry, we can represent each ¥ {7 (r) by
an expansion into % functions belonging to the same sym-
metry species:

max( £ ,)
WD (r) —zj dE

I min( E,)

><Lz .@‘L’:)(r;E“)D(LZ'Z{(Eu;e), (I11.2)
q

thus reducing the Schrodinger equation (111.1) to the form

max( E, )

(E—6) DY, (EiO0+3 f dE

u Jmin(E )

XX <Ly E JVILGE YD (B 0=0.  (IL3)
q
Here we have set
Ly, E WVLg,E D"
_fdrj(m(rE )Vf%’(’”(r E), (II1.4)

where the range of V limits the integration to the internal
region.

We are interested in values of € within the allowed range
of a band. The quantity (£’ —€) in Eq. (I11.3) may, therefore,
vanish. Equation (I11.3) can thus be cast in the form of a
linear integral equation'

D(LI;]I')/I (E';t';e)

' ri 0]
=oe—E) alff (€04 gD

>

mux( £ ) , .
[ "ar Sy E g B

min( £ )

XD YD (E €, (IIL5)

where &2 means that the principal part is to be taken in any
integration over the singularity, and the coefficients a are to
be determined by boundary conditions. Equation (IIL.5)
generates an infinite Neumann’s series,'* and its formal solu-
tion is

190 J. Math. Phys., Vol. 20, No. 1, January 1979

4

D(r‘) E €) =8(e—E) a't? I
2 ( ) (e ) aiya (6#)+(6—E')

XS 3Ly ELKILge "

{nl, Lg

Xa gl (€,). (IT1.6)

Here the symbol {4} . means that the summation is extended
only to those bands whose energy range includes €. Equation
(IIL.6) defines the K matrix.'* The two terms on the right-
hand side of Eq. (II1.6) represent contributions *“on the ener-
gy shell” and “off the energy shell,” respectively.

We now insert the solution (II1.6) into the expansion
(II1.2) and get

vID=3 T AP (ne )aliie,), L)
lut. Lg
where
.;;?f,r')(l', ,U) '%(Ll;o(rv ‘u)
max(k ) . ,
eSS )
IS min(f£ ) Ly
' 1y E rd 111.8
X;—_E'< q, ;t"Kqu’€/l> ' (1L )

(The principal-value integrals in this equation and in the
following are mathematically well defined for all € within a
band owing to the analytical behavior of the & as functions
of E. Furthermore, integrals of this type have been evaluated
numerically without difficulty.)”* The effect of the impurity
is thus to modify each Z function with energy € by adding to
it the second term of Eq. (I11.8), which consists of functions
Z(E"y with E'+¢, and hence orthogonal and linearly inde-
pendent of Z#(¢) itself.

The orthonormalization condition of the functions
WP (r) can be worked out either by using operator tech-
niques, as in Ref. 14, or, more directly, by using Eq. (I1L.5).
Attention must be then paid when integrating through the
double principal part singularity, as shown in detail in Ap-
pendix A of Ref. 16. The result is:

[ arwrowsoe

max( £ )
zzf dEZD(r‘}(E L ODU(E,; €)
u

min(E )

:6(6_6’) z E a(li;)/l(ey)a(llltzll'(elu)

fut. Lg
(I11.9)

+B(Ll;l,zl(€“)ﬂ(l4l;’,)&'(6‘u) ]’
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where
Bl )=m 3 > <Lge, KLY, €, Pall; (€,).
el (111.10)
The eigenfunctions ¥ {2 (r) are thus properly
orthonormalized by settmg
a, (€) - (€)+B 1 (€) B 1 (e)=6 4, (IIL.11)

at each €, where a,(e)={ i) (¢ ,)}. Note that we have
taken the coefficients a of the expansion (II1.7) to be real.
The #’s, which are defined in terms of the real and symmetric
K matrix on the energy shell,' are then real, too.

IV. SYMMETRY-ADAPTED GREEN’S
FUNCTIONS AND IRREGULAR FUNCTIONS

In Sec. III we have represented the eigenfunctions of
the full Hamiltonian H,+ Vin a form [Eq. (II1.7)] that holds
everywhere in space, that is, both in the internal and the
external region. In this Sec. we recast Eq. (II1.7) into a more
compact form that holds in the external region only. The
internal region will be treated instead by a different
approach.

We start by rewriting the elementary solutions (II1.8)
into the equivalent form:

(i I
PP (1) =PLP(x: )

+ f drG I (sr) VAL (5 €,).  (IV.1)

Here G " (r;r') is the symmetry-adapted principal-value
Green'’s function
max( £ ,,)

dE

min( £ )

G )= 2
“

X3 AL (BE,) - jgp(r E,).
q

(Iv.2)

This function is symmetry-adapted in that it transforms
acording to the ith row of the irreducible representation /" of
the crystal point group under group transformations of ei-
therrorr'. Since the Green’s function is singular at r=r’, the
bilinear expression on the right-hand side of Eq. (IV.2) con-
verges to G 7 (r; r') in the distribution sense, that is, only
when integrated over some test function.

Equation (IV.2) constitutes an eigenfunction expansion
of the Green’s function G Y (r; r’). In the usual context of
problems fully separable, e.g., in spherical coordinates, the
Green’s function can be represented either by an expansion
analogous to Eq. (IV.2) or, alternatively, in its “closed
form,” i.e., as product of the regular and the irregular solu-
tions of a one-dimensional equation."” For instance, when H,
is the free space Hamiltonian,
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k'2

— 05 7) =—@f K5 8) )

=kn (kr)j,(kr), r>r. (Iv.3)

Wewanttogeneralize Eq. (IV.3)tothecrystalsituation where
the variables cannot be separated.

Thefollowing considerationshold irrespectively of sepa-
ration of variables:
(i) Owing to the definition, Eq. (IV.2), and to the com-

pleteness of the & functions, Eq. (I1.2), the full principal-
value Green’s function

G (r;r)=Y G (r; 1) (Iv.4)
ri
satisfies the inhomogeneous equation
(Hy—€)G(r; r')=—5(r—r), av.5)

where H, operates either on r or on r'. For r=£r', G (r; r’)
thus satisfies the corresponding homogeneous equation with
the boundary condition of being regular at either r=0 or
r'=0. These two properties hold as well for each separate
term of Eq. (IV.4), GY (r; r").

(i1) Because the principal value integration in Eq. (IV.2)
excludes contributions “on the energy shell,” the second
term on the right-hand side of Eq. (IV.1) represents a func-
tion which is linearly independent of all ZZ functions with
energy €. At the same time, this term is a solution of H, in the
external region corresponding to the same eigenvalue €.

Therefore, in analogy with Eq. (IV.3), we can represent
the symmetry-adapted principal-value Green’s function

GUP(r; v'), forrin the external region and ¥' in the internal
region, as

G, ¥y=m Z > AL € )ZI; €.
f]. Lq
(IV.6)
This expansion defines the set of irregular multipole wave-
Sunctions &7 (r; €,) which are linearly independent of
the multipole wavefunctions #{'?(r; €,), which have the

same energy € but are constrained to be regular. The actual
construction of this set will be discussed below.

Substitution of Eq. (IV.6) into Eq. (IV.1) expresses the
elementary solutions, for r in the external region, as
ZLP (x5 €,)

=#( e)+m Y Y AU €,)

fu'l . Ly

X <Ly €, |KILg.€,> . av.mn

The corresponding formula for the general solution (II1.7) is
then
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WiT;)(r):iz‘ Lzmm)(r €)al (€,)
ul,

+ IO €)BED(€,)] (Iv.8)

with the #’s defined in Eq. (II1.10). This expression general-
izes to a crystal field the familiar expression of the wavefunc-
tion outside the range of a spherically symmetric scatterer,
as a linear superposition of regular and irregular solutions of
the residual Hamiltonian H,. Note how the dependence on
the perturbing potential ¥ is now included in the coefficients
B.

The actual construction of the irregular functions %
from the defining equations (IV.2) and (IV.6) requires us to
disentangle them from the infinite sum over L in Eq. (IV.6).
To this end, notice that, because the % functions of r’ in the
internal region converge to zero as L— o0, they are not all
linearly independent within this region. As a measure of lin-
ear independence we consider the Gram determinant of the
N Z functions with lowest values of L."* The value of this
determinant decreases steadily as a function of increasing N
for large N. Consider a value of N, N, at which the Gram
determinant has fallen below a preestablished low level. The
valueof L, L ., corresponding to ¥ . limits a subset of %
functions with L<L .. We can then construct a set of func-
tions “reciprocal” (i.e., orthogonalized) to this subset of %
functions over the internal region.' Successive integration
over the internal region of the product of Egs. (IV.2), or
(IV.6), and of each reciprocal function will thus furnish each
of the irregular functions .#” with LL .. Only this subset
of &, is, in fact, required in Eq. (IV.8) because the coeffi-
cients 3, , vanish for large L. An alternative procedure will
be found appropriate for our boundary problem, in Sec. VI,
because only the value of .# and of its normal derivative on
the boundary are actually needed.

V. THE HARMONICS OF THE BOUNDARY

The coefficients a and 8 of Eq. (IV.8) must be chosen to
satisfy the boundary conditions of continuity of the wave-
function and of its normal derivative across the boundary =
of the internal region. 3 can be the boundary surface of the
Wigner-Seitz unit cell containing the impurity, or, more
generally, of a number of these cells; that is, X is a piecewise
smooth surface, consisting of a finite number of plane sur-
faces. As discussed in the Introduction, we confine the actual
matching to the portion of 3 within a single basic domain,
because Y possesses the point group symmetry of the crystal
and because the wavefunctions in both the internal and the
external region are classified according to symmetry.

We shall perform the matching by expanding the wave-
function and its normal derivative on both side of 2’ into a
complete and orthonormal set of harmonics of the boundary
surface. In other words, we shall perform the matching by
the method of least squares rather than at a chosen mesh of
points over 2. The harmonics of the boundary surface can be
determined by a procedure analogous to that employed in
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Refs. 2 and 3 to calculate the harmonics of the constant-
energy surface in k-space. We then indicate the harmonics of
3 by QU(r; 2), the discrete indices .¥ ¢ being analogs of
the Lg of Refs. 2 and 3. The Q’s are:

(i) orthonormalized with unit weight over 2, that is,

45 do Q(r')(r Z)Q(r')(l' 2‘) 5// o (Vl)

(ii) complete over 2, that is, any piecewise smooth func-
tion £ “9(r) can be expressed over X as

2 QLNr Df LD, (v.2)

fPm]s

the coefficients f ¢’ being determined as usual by

[ =L |f> §P =965 doQQ2(r; 3)f P(r).
(V.3)

Consider, e.g., the surface of an fcc Wigner—Seitz unit
cell. The portion of X within the basic domain
(2b>y>x>2>0) has equation x +y=2b with b=a/4, a being
the lattice constant. The integral over 2 of any group invar-
iant function then reduces to

— b b,
¢ dof(x,y,z)=48\/2J0 dnJ; ] dzf(b—m, b+n,2)
(V.49)

The overlap integrals entering the expansion of the Q into
polynomials in x, y, and z #* can be now calculated
anaytically in a lengthy but straightforward way. For stance,

Q (2'4‘~)(r; ) is proportional to (r/b)*—5/2.

VI. THE MATCHING TO AN IMPURITY

In this section we sketch two alternative methods for
calculating the impurity wavefunctions in the internal re-
gion and for matching them to the wavefunctions (IV.8) of
the external region. Since every energy eigenvaluein the con-
tinuum possesses an infinite multiplicity, each method in-
volves boundary conditions that identity a set of solutions
uniquely.

A. Outward integration of the Schrédinger
equation

Following Altmann et al.,’ one may expand both the
centrosymmetric impurity potential and the impurity wave-
functions in the internal region into spherical harmonics
symmetry-adapted to the crystal point group about r=0.
The Schrodinger equation (II1.1) thus reduces to a system of
coupled differential equations for the radial wavefunctions.
This systems is integrated from r=0 up to the surface of a
sphere circumscribing the internal region. Each solution, 4,
is identified by initial conditions at r=0. This procedure
specifies the values of ¥ ' (r) and of (3/dv)¥ 7 (r) on
the inner face of 2 for each A. The eigensolutions can be then
continued into the surrounding unperturbed crystalline
medium by Eq. (IV.8) with coefficients a and 4 so adjusted
that the values of ¥ Y (r) and (9/9v)¥ ' () coincide on
the outer and inner faces of 2.

The problem of finding the coefficients & and 3 can be
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reduced to an inhomogeneous system of algebraic equations
by expanding ¥ 2 (r) and (3/v)¥ {57 (r) onboth faces of
3 into the harmonics Q ) (r; 2) introduced in Sec. V.
With the notation of Eq. (V.3), the system reads

NEXL AWEE?

=Y YKLAR (e N aih(e,)

(e} Lq

LI L (€ NFBL2 ()], (VL1)
and®
n i_ int Iy
‘/V(E'A <g7 ov Ve >2
. Lg
-—7 B, . V1.2
< l v Lq( € ) > Lg, /1( ) ] ( )

The normalization factor #? of the wavefunctions ¥
will be determined by the requirement that the a’s and ,B’s
satsify Eqgs. (II1.9) and (III.11).

In Egs. (VI.1) and (VI.2) the indices .¥” and L range in
principle over an infinite set of values. However, truncation
of the sums on the right-hand side to include only the first N
terms with lowest L can be guided by the discussion at the
end of Sec. IV. Each equation then contains 2V unknowns,
that is, the 2V ratios a/.#" and B/.#". These 2N ratios are
determined uniquely by Egs. (VI.1) and (V1.2) by including
exactly NV terms in the expansions into Q’s. Alternatively one
might include a larger number of Q’s and obtain an approxi-
mation for the a’s and s by least squares.* Knowledge of N
solutions (a;, B ;) (A=1,...,N)is equivalent to calculating
the N X N submatrix of K, Eq. (II1.10), “on the energy
shell.” These N solutions should, in general, be
orthonormalized to satisfy Eq. (II1.11).

The overlap integrals (% ¢|.# , (€ ,)>¥? and
(L ¢l(3/3v) F (€ ,)>§? aretobe determined by project-
ing Eqgs. (IV.2) and (IV.6) onto the boundary 3. In view of
the singularities of the Green’s function at r=r’, one may
consider initially two slightly separate surfaces, 2 _ for r’
and 2 _ forr, which then converge onto 5. Projection onto a
pair of harmonics of these surfaces, Q (Q;( r2 ) and
QUD(r33 ), gives

max( E,,)

Y 7 dE

m min(E )

1 1 o i
XZ <g7l‘@Lq(Ey)>(Zr) c—E (‘@Lq(E,u)Ig 7 >(2'r)
Lq -

=7 Z 2 <$?I qu( € )>(r’) <'@Lq( ey)lf’g'>(2ri) "

tul. Lq

(VL3)
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As the left-hand side of Eq. (V1.3) is finite, the series on the
right-hand side may be truncated after the first N terms.
Considering also N harmonics Q only, Eq. (V1.3) reduces to
N inhomogeneous systems, each of N equations, for the ¥
unknown matrix elements {.# ¢|.# | (€ ,)>¥”, which can
thus be determined uniquely. One can proceed similarly to
determine {.Z'¢{(3/8v) 7 1, (¢ L2, noting that the sur-
face integrals remain finite in splte of the sharper singularity
of the gradient of the Green’s function.

B. Variational calculation within the internal
region

A variational method can be used alternatively to calcu-
late the impurity wavefunction within the internal region. In
fact, variational methods are particularly suited to deal with
nonseparable Schrodinger equations.

For our continuous spectrum where the energy eigen-
value € is specified in advance within the allowed range of a
band, we look for the extrema of the integral®

J[ll/]=f dr[(VO)+(V +V—-e¥ ], (V1.4
with the subsidiary condition:
b5 doW=1. (VL5)

Here V_+ V represents the sum of the unperturbed crystal
potential and of the impurity effect, and v and 2 stand for the
volume and the surface of the internal region. A necessary
condition for an extremum of J [¥] is that ¥ satisfies the
Schrodinger equation (II1.1) with the natural boundary
condition
[851/
ov
The constant parameter b=b, plays the role of eigenvalue of
the normal derivative.?2 At any given energy ¢, the set of
boundary values of the corresponding eigenfunctions ¥, is
then complete and orthonormal over the boundary surface,

ﬁzda Wi W/I'=5/li" (VI.7)

The matching to the wavefunction in the external re-
gion, Eq. (IV.8), can proceed in analogy to Sec. VI A. The
boundary values of the variational eigenfunctions ¥, may

serve here as the harmonics of the boundary surface. Equa-
tions (V1.1) and (VI.2) thus become

'/V(E,I:{)(S/J.'z 2 Z [<A‘,"9?Lq(€,u)>(2r0a5.1;1,')).(6;4)

ful . Lq

bW] (VLe)

+ I 1 (€ 0B Lga(€,) ] (VL3)
NEb ;8 11
=3 3 [ lgpruen) et
+</{' I_:T]Lq(eﬂ)>;r’)ﬁ(l‘l;&(€“):|, (VI-9)
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where the matrices on the left-hand side of Eqgs. (VI.1) and
(V1.2) are replaced by 6 , ;. and by 6,6 ;..

The alternative methods of Secs. VI A and VI B might
complement each other in practical calculations. For exam-
ple, the outward integration method might provide a set of N
functions at a coarse mesh of values of €. These functions
might, in turn, be used as trial functions for a Rayleigh-Ritz
variational calculation at a finer mesh of e.

VII. DISCUSSION

Photoabsorption cross sections have been generally ob-
tained as products of squared dipole matrix elements and of
the density of states. It has been increasingly recognized®
that the density of states should be apportioned among chan-
nels of different symmetries and should reflect local impuri-
ty effects for each channel. The allotment of the “local”” den-
sity of states among the various channels was considered
earlier in Ref. 2. Here we have identified the relevant density
as the square of the normalization factor . ¥} of Sec. VI,
with the understanding that the matrix element is calculated
with the internal final state function ¥, . This normaliza-
tion factor incorporates the effects of the band structure in
the external region. The dependence of .#"\) on the energy e
will thus modulate the photoabsorption profile by reflecting
the influence of the external region on the rate of escape of
the photoelectron.

The current EXAFS theories? ascribe the modulation
of photoabsorption to interference between the wavefunc-
tion of the escaping electron and the waves backscattered by
the surrounding crystal structure. In our approach the ef-
fects of these reflections are incorporated in the conditions
over the boundary of the internal region; thereby, multiple
scatterings are taken into account to all orders because the
wavefunction in the external region takes full account of the
crystal field. Our approach is thus particularly suited to en-
ergies close to the threshold, while the EXAFS is suited to
escape energies = 30-50 eV.

The formalism of this paper can also be applied to the
calculation of scattering processes in crystals since Eq.
(II1.10) provides the K matrix on the energy shell.

Our approach should eventually be extended to include
a many-particle treatment of the internal region. This could
be done, in analogy with atomic calculations,” by a many-
body variational procedure which would also have to take
into account the relaxation of the medium around the hole.
A detailed procedure for this purpose remains, however, to
be developed.
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space-times?
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It is shown that there exist no physically significant (i.e., nonsingular) solutions to the Einstein-neutrino

field equations in an axially and reflection symmetric space-time.

I. INTRODUCTION

Solutions of the Einstein-neutrino (E-n) field equations
are interesting for, at least, three reasons:

(1) It has long been believed, specially since the discov-
ery of the neutral currents, that the neutrino transport
mechanism plays a crucial role in the supernovae evolution.'

(2) The E-n equations allow the existence of neutrinos
whose energy-momentum tensor vanishes identically but
whose current vector does not (“‘ghost neutrinos).?

(3) Under certains conditions (e.g., spherical symme-
try, axial symmetry and nongravitational radiation, etc.) the
E-n equations have no solution at all, not even “ghost”
solutions.™"

We started our research motivated by point (1): specifi-
cally, we were looking for a model of a star simultaneously
emitting neutrinos and gravitational waves under certains
symmetric restrictions. At the end, due to our results, we
focused our attention on point (2) and specifically on (3).

In the present paper we shall consider an axially and
reflection symmetric space-time which is asymptotic flat,
without any further conditions on the gravitational field
(i.e., it can be radiative, nonradiative and time dependent, or
static) we shall solve the E-n field equations and show that
the energy—-momentum tensor of the neutrino field vanishes
identically and the neutrino flux vector contains a
singularity.

We are going to use the formalism of Bondi et a/.,”* a
short description of which is given in Sec. II.

In the third section the equations of the E-n field will be
explicitly written following a paper by Griffiths and New-
ing."! The energy—-momentum tensor of the neutrino field as
well as the neutrino flux vector is found.

At the end some comments and remarks are included in
the conclusion.

Il. BONDI’'S FORMALISM

The general form of an axially symmetric asymptotical-
ly flat metric given by Bondi is®2

“Supported in part by Consejo Nacional de Investigaciones Cientificas y
Tecnodgicas (CONICIT), Caracas, Venezuela.
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dst=(Vr'e*P—Uwre*) dut+2e*" du dr
+2Ure” dudf—r(e’ df +e *sint0dg?, (1)

the four functions U, 3, ¥, V, are functions of u, r, and 6,
where x°=u is a timelike coordinate, x'=r a null radial co-
ordinate, x>=¢ an angular coordinate, and x’=¢ the axial
rotation angle,

An examination of the Bianchi identities shows the Ein-
stein equations

Ga3ER aff '+Ea/3 =0
split into three groups:

(1) four main equations

G, =0, )
G,,=0, 3)
G»=0, 4
G =0, (5)
(ii) two supplementary conditions

Go=0, (6)
Gy, =0, @)
(iii) and one trivial equation

G, =0.

The four metric functions are assumed to be expanded in
power series of 1/7; using the main equations, Bondi obtains
for the vacuum case (E ,; =0)

y=c@,0)r'+[Cw,0)— c]r'+-, (8)

U=—(c,+2ccot @y *+[2N (u,0)
~+3cc y+4ctcot O [r 4, 9)

V=r—2Mu,6){N,+N cot0— ¢}

—dcc 5 cot O—Lc(14-8 cot?B)r' 4., (10)

B=—4cri+0 (), (11)
and

4C, =2c%c ,+2cM+N cot0—N,, (12)

where ¢, N, and M appear as functions of integrations. At
this point it is shown by Bondi ef a/. that, given y for one
value of u and given the three functions c(u,6 ), N (u,0), and
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M (u,0), the entire development is determined by the four
main equations.

Next, in the two supplementary conditions (6), (7) only
the inverse square term survives, an involve only relations
between the three functions ¢, M, N and the inverse square
law term of E,, and E,,

PGo=2M ,+2c% —(cgo+3cycot0—2c) ,+ES =0,
(6"
PGyu=—3N,—~M ,—3cc 0
+4cc, cotf@—c co+EQ =0. (7)
We shall use letters as subscripts to denote derivatives; for

example

af
:——:a = ’6,
fo=55=96 f=
Superscripts will be used to denote the coefficients of each
power for example

fzf(AN)rn +._._*_f(*1)r_+_f ) +f (1)r*1+,.._

lll. EINSTEIN-NEUTRINO FIELD

A given space-time will admit a neutrino field if a null
tetrad can be constructed satisfying the equations'?

K*., =0, (13)
(K,t"—t,K") ,=t°K,,, (14)
R, +E, =_0, o (15)
E, =i(H, +H,,—H,,

~H,t,+P,K,+P . K,) (16)

(bars mean complex conjugation),

where
H,=t°K,,, an
P,=t%,, (18)

and the tetrad vectors (K,m,z,1) satisfy the following
conditions:

mm_ =K°K _ =t%,=m®,=k%,=0, (19)

8P =mPK 4m kP —rotP_tot?h,

The vector K |, is interpreted as the neutrino flux vector
[see Eq. (13)]. Equations (14) are the Weyl’s equations for

the two component neutrino in terms of the tetrad. The ener-
gy—-momentum tensor for the neutrino field is given by (16).

Let us start by choosing a tetrad satisfying the condi-
tions (19). One such tetrad could be"

K*(0,e ~%,0,0), (20)
m*(1,—LVr\,U,0), D
t%(0,0,4r'e "7 (141), (1 —i) e "r' sin™6). 22)

In order to satisfy Eq. (13), we apply a boost in the
(K,m) plane, obtaining a new tetrad:

K,=4"K,,,
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m,=Am,,

t,=t,,
and choosing the boost parameter A4, so that

K, =0.
A very simple calculation gives A =f(u,0 )r*, where f(0,u) is
an arbitrary function

Hence, the appropriate tetrad is (we omit the primes)

K*(0,4"e ~%£,0,0), (23)

m (A4, —34Vr' AU,0), (24)

t “(0,04r'e (140, 4(1—i) e 7 r'sin'g), 25)
the covariant components being

K, (47,0,0,0),

m (34Vr'e* 4e*2,0,0),
t(Ure"(1+0)3,0,— Lre"(1+1), — (1 —i)re "7 sinb).

For practical purposes, it is better to work out the calcu-
lations in terms of the spin coefficients'*

k=K, t"K", v=—m,.t “m",
p=K, ", p=—m, 1,
o=K,t"" A=—m,t""
=K.t "'m’, II=—m,t*K",

azi(K”;Jn"t—”—twj_"t“’),
g: %(K;L;x}nut V_t/_t;vt_'um V)’
e=4(K, m" K" —1,1"K "),

b=3(K,. m"t *—t,.1 "1 ")

(the spin coeflicients g and b are usually denoted by ¥ and 8
respectively; we use Latin letters to avoid confusion with the
metric functions ¢ and £).

Using (19), we can write
tyy=—km,m —mm, K +om,t, +pm,it,
+K,m TvK K ,—3K ,t,—jiK 1,
_t,utv(g_é-)—'tyKv(g—g)

+t,t,(a—b)+(b—a) t,t,, _ (26)
KW=(g+g‘)KMKV+(e+e‘)K#m ,Ha@+b)K ¢,

—(@+b)K 1, —71,K,~T1,K,

—Kt,m,—Kkt,m,

4Gt AOL L AP L APt eX))
therefore, Eq. (13) becomes
E+E=p+p. (28)

Multiplying Eqgs. (14) by K %, m®, t %, and  “ successively
and using (26), (27), one gets respectively

K=K, 29)
b=r, (30)
o=a0, €)))
e—E=p—p. (32)
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Thus Eqgs. (13) and (14) are equivalent to
€=p, (33)
b=r. 34

For the energy-momentum tensor (16) one finds without
difficulty the equivalent expression

E,.=2{(§—8) K, K ,+(E=6) [Kym ,+1 1]
—Qb—a) K ,t , +Qb— DK 1,
(35)
20,6, +5t, b, +km 1,
——km ,t,}
Let us now calculate the explicit form of the spin coefficients
in terms of our tetrad field. A straightforward calculation

gives

x=0,

e=—e P4, (36)
p= —A —1e772/2’r-1,

r=—1e "T(1+4))
X [FBy—re " PGU, +y,U)+Ue**Pry ],
b=—1te (14D (3" 3 uf+ Bo(—r/2) e** PV |
+iUe? (e —e Pyr Ly s —1ricotb}, 37
a=[(1—i/4r]e 7[re* " PU,
— (N +YB =P+ Y B ),
Y= (V+rV,+2rVB ) —(/fXf . —2B.)
—Ur(fo+2fBo)
o=(—i/2frye y,.
One can see at once that Eq. (33) is automatically satisfied.

Equation (34) will be discussed later.

Let us now come back to the field equations, with the
help of (36) and (35) one gets

En:O, E12=O, E33=0; E22=0-

Thus the main equations (2)—(5) and consequently the
expressions (8)—-(12) are the same as in the vacuum case.
Next, since the two supplementary conditions (6), (7) are
reduced to the inverse-square-law term, we only need E &
and E§). A simple calculation gives

E@=E@ =0,

The other components of the energy—-momentum tensor
vanishes because of the symmetry of the problem.

So far we have seen that any possible solution of the E-n
equations, under our conditions must be a “ghost™ solution.
Let us now return to Eq. (34) and see if these solutions can
exist at all. Feeding back the expressions (8)—(12) into (34),
we get, for the order O (),

[0, =1 cotb, (38)
for the order O (+?)
c=0, 39)
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for the order O (r?)

N=0, (40)
for the order O (r¥)
C= sin&"*"-¥(u); 41

since angular singularities are not allowed in the metric, we
get

C=0. (42)

Expressions (39), (40), and (42) imply a spherical symmetric
metric, and Eq. (38) gives

f=¢ (u) sinb"?,

¢ (1) being an arbitrary function of #. The final expression for
the neutrino flux vector is thereby singular in the axis
8=(0,7),

K (¢'(u) sind*r,0,0,0). 43)

IV. CONCLUSION

The results of this paper suggests that the Einstein-neu-
trino system is specially sensible to symmetric restrictions.
The next step should be to find out which, if any, of the three
restrictions, axial symmetry, reflection symmetric, and as-
ymptotic flatness, is by itself responsible for the situation and
furthermore if there is any relationship between the symme-
try restriction and some specific properties of the neutrino.
This last point leads us to a more fundamental question con-
cerning the physical meaning of the classical results for Fer-
mi fields.

In fact, it is well known that the classical neutrino the-
ory is not without its problems.'*!” One major problem being
the abscence, In the classical approach, of the Pauli exclu-
sion principle.

It should be realized that the relevance of any solution
of the E-n equations depends on the answer to the last
question.

Finally we would like to remark that, though the series
expansions (8)—(11) are not in general valid starting with
certain term in the development, the results we have ob-
tained just require the first term in (8) to be true. We recall
that this is essentially equivalent to Sommerfeld’s radiation
condition.

To obtain (39), (40) and (42), higher orders in the ex-
pansion (8)-(11) are required. But the information this equa-
tion gives [together with (38)] is that the neutrino flux vector
in a spherical symmetric metric is singular. This is a known
result,®!! so that the expansion up to required orders, in this
case, seems to be justified.

We would like to thank the referee for this point and a
question concerning the choice of the neutrino flux vector.™
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Recently, from two independent methods, the generalized nonlinear Schridinger evolution equation in two
spatial dimensions has been derived both by Ablowitz and Haberman and by Morris. Here the same
extension of the Schrodinger cubic equation is obtained from a two-dimensional spatial inversionlike
integral equation when a suitable time dependence is introduced. We investigate the solutions
(corresponding to degenerate kernels of the inversion equation) in both cases, where the nonlinear part
reduces or not to a cubic term. While in the first case, the solutions are not confined, on the contrary in
the second case, we show explicitly for any finite time, that there exists an infinite number of solutions

which are confined in the two-dimensional coordinate space.

I. INTRODUCTION

The generalization of the nonlinear Schrodinger equa-
tion in two spatial dimensions has recently been derived by
two different methods: firstly by Ablowitz and Haberman,'
requiring the compatibility conditions for two linked partial
differential systems. Secondly, Morris,? generalizing the nice
and powerful “prolongation structure” method of
Wahlquist and Estabrook? in twospatial dimensions, has
also obtained* the generalized nonlinear Schrodinger equa-
tion. However both methods give the extension of the evolu-
tion equations but do not provide the explicit construction of
the solution and this last point is the aim of the present paper.

Recently® we have established an inversionlike integral
equation (IE) associated with a partial differential system,
from which we can construct both a class of potentials and of
solutions. In particular it was shown, in the case where the
kernels of the IE depend upon two independent variables,
that among the potentials reconstructed from this IE, there
exists a family of confined ones in a two-dimensional coordi-
nate space.

In Sec. II, we recall very briefly the results of the IE in
the two-dimensional space and establish some general prop-
erties useful later for the derivation of the evolution
equations.

In Sec. IIT we introduce the time in the kernels of the IE,
assume that they satisfy the two-dimensional spatial heat
equation (for imaginary time), and also deduce the general-
ized nonlinear Schrédinger equation,

a az 82
<I_+al—+az—)A+2A @B, +aC,) =0,
ot Ox? Ox3 )

M

B, =C, =—n|4P, a, 7 arereal,

where 4,B,C depend upon three variables x,, x,, ¢, and B | =
means dB/dx,,-. Equation (1) with trivial changes of co-
ordinate variables can be compared with the above recalled
equations (for instance x,+-x, with the Morris’s equation).
The nonlinear part in Eq. (1) reduces to the usual cubic term
if the derivatives B . and B, _(as well as C, and C, ) are
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proportional. This case requires that the modulus of the ker-
nel of the IE depends upon only one variable and so we are
able to distinguish both cases where the nonlinear part of (1)
is cubic or not.

The most simple degenerate kernel of the IE (the soliton
case in one spatial dimension) is obtained by multiplying any
solution of the heat equation [linear part of Eq. (1)] corre-
sponding to one coordinate by any solution of the same equa-
tion for the other coordinate (of course taking into account
boundary conditions). In this manner we exhibit in Sec. IV,
for the nonpurely cubic case, an infinite number of solutions
of Eq. (1), confined, for any finite time, in the x,x, plane. For
instance, one of them is

P H}:l(/‘j)_m exp(sz/#j)
L= 112 (V Reu | )'Sg d ¥, exp(—2V?)

u;=n;—4ia;t, Reu,=Ren;<0

)

J J luj|

Further for the pure cubic nonlinear part of Eq. (1), we have
found that the solutions are not confined.

When the kernel of the IE is a finite sum of discrete
terms (the multisoliton case in one dimension) we have
found similar features for the solutions in both cases.

Il. INVERSIONLIKE INTEGRAL EQUATIONS
ASSOCIATED WITH A TWO-DIMENSIONAL
SYSTEMOF FIRST ORDER LINEAR EQUATIONS

A. The results of Ref. 5

(i) Let us consider for i=1,2, j=1,2 the integral
equation:

. —_— m=2 0 .
Kixpop)=F;+ f F K" (x,x;;8)ds,

m=1
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Fl=F,{€, (A, (X, —)+A %17
n:n[/ll(xl_y)+/{nrxm]}’
(€, r=(n,)r=1, ©))
szF;(s=xj)=F]’f{ej/1 X A (x,—p)+A x ;1)
where the kernels F| depend upon two independent
variables and the A, are fixed numbers.
(i) We assume
limF}=lLmF, K} =0. (4a)
Y—roc S—*00

We can verify from Eq. (3)

— i — i 1 d 1 9 i
ﬂ'i I(F_/)x,:/lj I(Fj)x/z_(ﬂ’j l?;:__*_/{l lg>Fj
(5)
a3 A; 8 ) . PN
— 4L — Ki =K' K™A.A 1, A
(8xj A, v/ mKJ A A M
K=K (xxy=x,,). (6)
(iii) We define two components vector columns con-
structed from the solutions X ; of Eq. (3)
v=|vecnsi+ [ v K |
j=12, i=12, )

aJ

(iv) If we assume

hm U)K {(x,x; ) =0, (4b)
Y--roo

and define
giGenx)=2,(4,)K", (8)

Then the ¢, (j=1,2) defined in (7) are solutions of the partial
differential system

X1
i+i/12k

a . —q?
(a_'{"li]k g1
“‘Ié Ix,

)¢j20, Jj=12. &)

Equation (3) is an inversionlike integral equation giving the
possibility of constructing a class of potentials g}, g2and a
class of solutions ¥, ¢, associated with the system (9), when

we introduce into Eq. (3) kernels F j' such that the conditions
(4a) and (4b) are satisfied.

B. Some properties of the solutions of the (IE)
Eq. (3)

We sketch very briefly a set of properties which will be
useful in Sec. III for the derivation of the evolution equation
(1) associated with Eq. (3). For simplicity, in the remainder
of the paper we consider in (3)—(9): 4,= e1=73=1,

A,=n =£2=—1, FI=F2=0such that if we write Eq. (3)
in a matrix form:

. + oo
F(xux5y) =5 (x1,x2y) +J F(xuxz8:p) K (x1,x538) ds,

W_(K{Ké)
KiK3)

W

(F 0 Fl=Fl(x,y—x +x2))
T\F2=F}x,p—x,+x1) 0 ’

0 Fl(s—X,+x,p—x,+x,)0 (s—x,)

?:
(Ff(s—x1 +x—X:4+%)0 (s—x))

1. We define
ad a d a
Ossz +—-— dx,z —Ta
ox; dy dx; Oy

Equation (6) can be rewritten

Osx. K} OdX2 K% K}Ké Ok\; ,
s wall 2 =0. 6)

O0un Ki 0, k3 KiKYWRNO

$X;
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(39
0 )
! In particular, from Eq. (6) we get:
Ki, +KiIKI=0, joi (6a)
Ki, —(iK;) +KiKi=0, j#i, (6b)
To\dy y=x,
—KiK{, +K!, =K  +K!O, K. (6¢)

2. In the following, by straightforward algebraic calcu-
lations, we derive, from Eq. (3), a set of integral equations for
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quantities linked to %~ (when derivatives with respect to
X,,X,,p appear). These equations have the same kernel # as
in Eq. (3) but different free terms. We will get relations of the

type

(o) = T xxap) + f F (eoxssy) HGeoxas)ds
(10

where ¥, 7 are 2 X 2 matrices linked to %", %, Z and

their derivatives,

K O, Ké)

(10a)
X, 1
o 0. Ki 0L K;
= 4
0. Ki 0%, K}
KL+(04KD,- 0
%o)z_y( 1x, x5 y=xi
2 0 K§X,+(0dx.K%)y:x,

(10b)

3. If we are interested in cases where the potentials
g;= K ; are linked, we must find the corresponding rela-
tions between the kernels F ) and F3. The two interesting
cases are when one potential is proportional either to the
other or to the complex conjugate of the other.

Let us remark that in Eq. (3) the equations decouple
and we get

K;(xl,xz;y)
=Fi(x,;y—x;+x) +J dsf du

XFi(s—x;+X ;p—%;+x)

XFlu—x;+x;35—x; +x ) K [(xp,x5u) i,

Rim | Fio—x, 2 0 ) KlGroxisyds. an
4 Il}\ Appendix A we study both Eq. (11) when
K 3=n(K })* and we get the two following properties:

(i) If the F; satisfy

Fiuwv)=7 [F(vu) 1%, (122)
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then the K ; satisfy
1?2:"7(1?5)*, If('\:x-i—ﬂll/(\;l =0, I?j arereal. (12b)

(ii) If either for i=1 or i=2 we have

Ki, =&.Ki, Fiuwv)=n [Fivu)1*, (13a)
£, being real, then we get for K’ and |F:
I/(\j is a function of & ;x,+x;, §,£,=1
(13b)

(262 ) Flwml=0 o |Fiuwi=l Figutoy.

The last property for F ) is important because it shows
that the modulus of the kernel depends upon only one vari-
able as in the one-dimensional case. However no restriction
appears for the phase of the kernel F}. On /Ehe other hand,
duetoboth Egs. (12b), (13b), the modulus |K } of the solution
depends also upon only one variable £ x ; +x ;. It follows
that this is a very particular two-dimensional case because
the modulus of the reconstructed potential depends in fact
upon only one variable which is a linear combination of the
two coordinates x; (the same considerations about the phase
hold as above). These properties will be useful later when we
study the cases where the nonlinear part of Eq. (1) reduces to
a purely cubic term.

5. The most simple degenerate case for the kernels F J’ (a
product of a function of s by a function of p) is very interest-
ing because the solution of (3) can be written down in a
closed form (it corresponds to the one soliton case in the one-
coordinate case when the time is introduced):

Fj=gj—x;+x ) hj(y=x;+x)) (142)
DK;=gi(x)h;(x;),
DRI=gl(x)hj(x) [ gl hitm dv,

(14b)

D=1~f°° gé(w)h%(w)dwfm g 300) h 3w) dw.

The main difference with the one-coordinate case is that g ; ,
and A j' do not need to be of a pure exponential type.

If we require now that K 2= K 1% (y real) we get:

Fl=g\(s—x:+x)g(y—x+x5),

(15a)
Fi=nlg(s—xi+x)g(y—x:+x,) 1%,
DK =g (x)gx.),
DR =ng (x,)? f " g ) aw, (15b)

D=t1—n(" lg(w)aw f " g 2w

In Appendix A we prove for the particular solugon [(15a)
and (15b)] of Eq. (3) that if (3/9x , — & ,-B/axj)Kf =0, then
£ ;£ ;=1andg]are of pure exponential type. This alternative
proof (in a particular case) of the more general property
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(13a) and (13b) could be useful for the reader mainly inter-
ested in a simple solution like (15).

6. In Appendix A it is shown that if
1(u, v)="7 [Fz(U u) 1%, z(u v)= F2(“+§U) then
K depends upon one variable, K K (x +£x,).

{il. DERIVATION OF THE GENERALIZED
NONLINEAR SCHRODINGER EQUATION IN
TWO SPATIAL DIMENSIONS

In order to derive the evolution equations associated
with Eq. (3) we adopt the same strategy as in the one-coordi-
nate case. First we introduce a parameter 7 in the kernel of
Eq. (3), ¥ (x,x:; s; y;t), and differentiate with respect to ¢,

(z‘f,—frfz _ +f.7,.zf. (16)

Secondly we want to compare the rhs of Eq. (16) with
Eq. (3)itself. So we asume that . , is linked either to % orto
its derivatives with respect to the variables s,y,x;,x,. In this
way the results of Sec. I1.B will be applied. Thirdly, using
straightforward but tedious calculations, we want, starting
from Eq. (16), to deduce another integral equation propor-
tional to Eq. (3).

1. We consider F'; (s—x +Xx 5 p—x,+X;5t),
=F: (x,, y=x,+x; t)mEq (3)andassume,

(iJr 1—‘9“—+aw g )F;:o,

ar os? H?

id rea 82) 5
——ta a—|F{=0, 17
( AR FRRE ey an
where @, and @, are constants. Consequently for .7 we get:
id 2 F \=
(‘5_‘}‘6110 +a2(9x§>/2—0,
2 —-—
(~ﬂi+a___+%og)7fzm
ot ox?
F;,y:ﬁé,xﬁ f%y :F%,x, (17a)

2. Using Eq. (17)in the rhs of Eq. (16) and some elemen-
tary algebra, we deduce an integral equation of the Eq. (10)
type where

: 2
t y? o
/:/ym: i , K
0 _'fl-aﬁ_
at ?
id I\~
—+a, F!
Y 0 (Ht c7y2> g
‘Wlll
(i_ i)*z 0
o o) !
alKlv|y = X, Z,yl_v:Xz
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O F%,sL:x. ('—GZK/'\: —azk\;)
+ . ~ A~
F;,,\-L:M 0 alK% a1K§

3. Any linear combination of the #”; also has a structure
of the type Eq. (10). We seek acombination such that the free
term is proportional to ¥ and we get

7 Q —a 0 ’ 0 azk\l

J/w :%lll +<?/)“( 0 2 a,)+%'(—a1f<\% 0 2)’

HO, =F ( e azK%m)

Ay = o2 k2 /)
—Cl‘lK]'xl—zale,x,

Finally, we obtain

2a2[/(\},x1 aszx,) (0 0)

~ . 18
—a.K fx\——2a,K 2./ N0 (18)

—
Equation (18) gives us four scalar nonlinear partial differen-
tial equations (nlpde) for functions depending upon four var-
iables x,,x,,p,1,

id > A~ .
—+t€a —-03, ——2K§r)]K§
[8t (8y !

+a, (KK, ~KjO,, Ki]=0, i#, (18a)
i & . N
L9 La, +a,0§x)K'.+2a1Kfo-x
( at asz = 7 7 hx,
+2a KiK', =0, i, (18b)

wheree=—1fori=2ande=+1fori=1.

Only K 1, i4 are linked to the potentials ¢ ; of System
(9). If we restrict Eq. (18b) to y=x; we get

<€i.é_+a .ﬁ_+a
ot ! ox?

Jj i
+2a jK;;x,)K 120, i,

(18¢)
Ki, +Kiki=
If, further, we link the two potentials K and K ? by assum-
ing K 2= K }*, then both equations in (18c) are complex
conjugate and finally we get the extension of the nonlinear

Schrodinger equation in two spatial dimensions, written
down in Eq. (1),

2 2 A ~ ~
("9 rardtarS a2k, 2 ek R =0,
at ax 1 3x 2
(1)
Ki +nky=
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IV. SOLUTIONS OF THE GENERALIZED
NONLINEAR SCHRODINGER EQUATION IN
TWO SPATIAL DIMENSIONS

In principle we could consider any kernel
Fi(s—x;+x;y—x+x ;) satisfying Eq. (17), the heat
equation for imaginary time, and such that the boundary
conditions (4a) and (4b) are satisfied. However, we focus our
attention on:

(i) the study of Eq. (1). Thus f%:n I/(\é*
Fiu;v;t)=n[F X(v;u;t)1*, and our discussion is limited to
FX(s—x,+xy;y—x,+x,t) whereas F?
=X+ X3y =X, + x50 )= [F 1y =2+ x5 =X x5 )]*.

(ii) the assumption that F} is a sum of a finite number of
discrete terms (no continuum),

N
Fi= Z(J & i{h=s—x:+xit)g, (a=y—x,+x3;1),
i=1
(19)
N
F%:W z (a8, (y—x.+xt)g z,i(s_x1+x2;t)]*’

i=1
where the a; are arbitrary constants and g | g , ; is a solution
of Eq. (17) for any i.
Due to the fact that the heat equation is of the first order
in d/9t and that the derivatives /9 u } apply only on
gj_,-( Ut ), we get

J &
l‘——+ I(i{;:’ :O.
( ot ’o"uf)g}' s

Considering the general heat solution (with a time transla-
tion in order to have integrable Gaussian kernels) we get for
the general kernel Eq. (19),

(20

gj,i(uj) ::(:uj,i)—wz

+ oo
xf exp[(u;—u)Y /1, G, (u))du/,

(192)

where G, (u j’) are arbitrary spectral functions such that F }
leads to a correct formalism [Egs. (4a) and (4b)] and
KHii=7; —4iajt, Re,uj,,. :Renj,,- <0.

In the following we begin our study with the most degen-
erate case N=11n Eq. (19) (corresponding to the one-soliton
case in one dimension) where the solution is written down in
closed form in Eq. (15b). We will have to consider only two
G ,;(u}),j=1,2 functions [we drop the subscript / in (19a)].
We want to illustrate some general features by some exam-
ples in both cases where the nonlinear part of (1) reduces or
not to a cubic term. Introducing later other terms with N > 1
(what is called multisoliton in one dimension), the solutions
are not written down in closed form; however, we can still
study these general features. For simplicity we disregard in
our discussion the cases where the Fredholm determinant
can vanish. However let us remark that in (1 5b), D is always
different from zero for % < 0. In the pure cubic case, we know
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(II B 3) that II/(\ 1| depends upon only x, +£x, (£ real being a
constant). In the x,x, plane, along the asymptotic
x,+£&x,=constant directions, IK ;| cannot be confined; and
we want to verify this property with simple explicit
examples.

N=1: First case: the nonlinear part of (1) does not re-
duce to a purely cubic term and we show that there exists an
infinite number of solutions which are confined in the x x,
plane.

Let us define x, = Rcosd, x,= Rsinf. We study LI/Q[
when R— 0. Ln the discussion we find two cases: Either the
numerator DK }}0 and the Fredholm denominator D [Eq.
(15b)] is bounded, or we have to investigate both the Fred-
holm numerator and denominator.

(i) Decreasing like a Gaussian at finite time

Asa first example we take G,=5(u I) in (19a) [eadmg to
8;=(u ;)" exp(u ‘/,u ;) and we get the solution K 1=¢
written down in the Introductlon {Eq. (2)]. In Eq. (2) the
numerator goes to zero likes a Gaussian when R— « where-
as the denominator D is bounded. We get
D < 1+(ml/2)[Reus;Rew,] 2. For n <0, D> 0 whereas for
7>0, D can be zero. For 7 < 277'(Rew,Rep)'?, D is differ-
ent than zero. Weadd D K ! in order to have all the quantities
defined in Eq. 2),

pRi=1 1 __
bejl (Rew )
Reu 17~
Xexp[ijz eﬂlzf ]f dv; exp(—2v)
JAIE

As a second example we take G ; =5'(u jl) , leading to
g, =u;(p;)"" exp( uf/,uj) and get another solution of Eq.
(1) confined in the x,x, plane for finite time,
1{(\;= szzl(,u'j)_mxjexp(sz//‘j) '
1= IT7_|Reu [V fFdv vlexp(—2v?7)
As a third case we consider a more general family of

examples. We start froma linear combination of distribu-
tions for G,

Gi=3p; 0P (u))+£,,6%7"(u)),
q

(21a)

where p ; , and &, are constant numbers. From the heat
equation we get

gj(uj)
) a,n 2
=(p )" exp(u;/n) ¥ (o, i _%ujp
q p=0 (,Uj)
+€ 54 i ‘;i’q:qtrl sz) e

where the numbers a,,,anda p2q+1 ATE easily computed.
Substituting these expressions into Eq. (15b) we see that the
confined properties of the solution in the x,x; plane, at finite

Henri Cornille 203



time, are the same as in the previous examples. Here, we have
a product of Gaussian functions by polynomials such that
the asymptotic behavior in the x.x, plane are dominated by
the Gaussian terms.

(ii) Decreasing at least like an exponential (finite
time)

As we shall see later, pure exponential 8;kernels do not
lead to confined solutions. However as a fourth family of
examples if we mix exponential type kernels with Gaussian
type kernels, then the resulting solution Kl » are still con-
fined. However, for this property we have both to consider
the numerator and the denominator. For instance, let us
choose g, =expn:(u, +iamit), g.= (1) exp( u 2/u,),
Ren; <0, u,= —4ia,t+n,. Then we get

P

K =(,)"explig +x2/u, ) {exp( —&1)

+[7 exp(§,)/2Re77,\/ Ren,| |

—1

X J‘oo exp(—2uw? dw)

[é‘,: Ren:(x,—2a,t Imy,) (2)

¢=x,Imy, +at [(Ren,—Amn,)* I’

where X, is the same as in Eq. (2).

The denominator is the Fredholm determinant multi-
plied by exp(—¢,). We recognize for x, fixed, the classical
[cosh]™! function, typical of the one-soliton solution in the
one-coordinate case. Of course, instead of the pure Gaussian
forg, we can choose any other function of the type (21b), the
solution K ; being still confined in the x,x, plane at finite
time. We could also replace g, by an exponential multiplied
by a polynomial as in the following.

(iii) Decreasing at least like powers

Let us consider for the g; the product of an exponential
by a polynomial of arbitrary order. The most simple cases
are the zeroth, the first, or the second order. We can verify
that the heat equation (20) has solutions (with, as before,
Ren; <0):

g=exp[nu;+iamt)], (232)
8= "u;+ 2iam ) exp[nfu;+inet)], (23b)
gj:(u?+4[ 41714 ]

+2ia—4alnit?) exp[nfu+inat )], (23c)

and so on for polynomials of higher order in 4, We do not
consider here both g, and g, given by Eq. (23a) [the resulting
F ; should lead to a pure cubic nonlinear part in Eq. (1)].

Asa firstexample wetake g, in (23a), g,in (23b) and get:

(1?;)-1=(exp[_(;+,-¢)]+ uz’em exp(é—id)
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X J lv+x,+ 2ia, .8 ).exp(ZRenzv)dv]‘
0

X (¢, + 2da,myt ) (24a)

2
¢=> a;tRen;+x; Imy,,
=1

2
€= 2 ijenj~tajIm77f.

Along the asym/gtotlc directions x,Re%, +x,Ren, =const, in
the x,x, plane, |K | decreases like a power R~ whereas outside
these directions, |K 2| decreases like an exponential.

Asasecond example we take both g;in Eq. (23b) and get
(Kb =[expl—(E+i¢)] —n exp(E—id)

2 o0
fo ;+x;+2ia ;7,4
j=iJo

2 —1
Xexp(ZRenjvj)dijH(xj+2iaj77jt) ,
1

(24b)

where ¢ and /{ arethe same asin Eq. (24a). We find that in the
x,x, plane, | K } decreases at least as R™>. As athird example if
g is given by (23b) and g, by (23c¢), then |K 3 decreases at
least as R™. Both g; of the Eq. (23¢) type lead to a decrease of
at least R and so on.

N=1: Second case: the nonlinear part of Eq. (1) is re-
duced to a purely cubic term and we show that the solutions
are not confined in the x,x, plane.

From the study of Sec. II B, we know that |g] must be of
the exponential type. As a first example we take the most
simple case where both the modulus and the phase of g; are
exponential, or equivalently g; are given by Eq. (23a). We get

1 -1 __ ;: CXP(§—1¢)
(Ky)y'=exp[—(§ +id)] “ARenRen,
where £ and ¢ are still given by Eq. (24a). This solution is the
extension of the classical soliton solution in one-spatial di-
mension. Of course this solution is not conﬁned along the
direction x,Ren, +x,Ren,=const. Further, tK 2[ depends
upon only one variable, x,Ren, + x,Ren,.

(24¢0)

As a second example, we assume that only [g} is expo-
nential. From the heat (20) we have found the exponential
type solution Eq. (23a) and another one (see Appendix B),

g,;(u;) ':‘(dj—‘t)‘l/exp{(dj—t)_{cjuj

+i(-41:j +a,.c})“, (25a)
i
where ¢; and d; are real and 1 is restricted so that
cfd;—t)"'<0.
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Substituting this expression in Eq. (15b) we get

(K= []_1:71((1, -t)m]

7 exp(§ —

e i¢) ]

x[exr’[—(§+i¢) -
(25b)

C;X;

§ 2 X ¢ 2 1 ( XZ N )
= . = a C
j; dj—t j; djht 4a

We verify of course the general result (12b) and (13b) that
| K'Y depends upon only one variable £. This solution is
pathological but we verify that along £=constant, it is not
confined. We could also choose a mixed kernel where g, is
purely exponential [Eq. (23a)] and g, of the Eq. (25a) type.
We still get a nonconfined solution.

In conclusion, at this most degenerate case level we see
that there exists an infinite number of confined solutions in
the noncubic case whereas in the cubic case the few solutions
that we get are not confined.

N > 1: First case: there exists an infinite number of con-
fined solutions when the nonlinear part of (1) is not a pure
cubic term.

We consider for F ) a finite sum of terms given by Eq.
(19) and even if the solutions are too complicated to be writ-
ten in closed form, we can study the confinement properties.
We get for the solution of Eq. (3), the extension when N > 1
of the Eq. (15b) solution for N=1:

A N N
K;= Z g2,m(x2) [g l,m(XL)+77 Z C’I"JA 1]’
m=1 =1

7 > A CLCoy

V&L m

A 1[1—772 Crln,ICrzn,l]
:Zg 1 (X1) Cfn,u (26)

= f dug (vt g (vt Yo,

where for simplicity we take a,,=1 in Eq. (19).

We disregard from our discussion the zeros of the Fred-
holm determinants and we consider finite time. We assume
for the kernels g; ,, that they are of the type of Egs. (21a) and
(21b) (introducing a subscript miny ; ,,, p ;. and
S jqm> Mjm=—4a;t+7n,,, Ren,  <0)decreasing like
Gaussians (multiplied by polynomials) Firstly, we remark
that for this family of kernels, the |C/, ;| are bounded in the
XX, plane.

From Eq. (21b) we see that the modulus of the inte-
grands in C/, , are decreasing Gaussians multiplied by poly-
nomials and so the integrals exist when X o0 . Secondly,
when we solve the linear system [second line of Eq. (26)] we
see that 4, can be written like 2, g, . (x)) E ,, , where these
E, ,are bounded in the whole x,x, plane. Thirdly, for K ;
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[first line of Eq. (26)] always appear either the factors
g2m (%) 81 m(X1) OT 8, (x:) g1, (x)) multiplied by bound-
ed functions in the x,x, plane and consequently K decreases
like a Gaussian (multiplied by polynomials) when
R=(x2+x)">w.

N> 1: Second case: the solutions corresponding to a
pure cubic term in Eq. (1) are not confined.

We recall that this property 1s a consequence of our
general result of (II B). Namely |K 5 1s a function of x, 4-&x,
and consequently in the asymptotxc directions
x,+£&x,=const. of the x.x; plane, fK 3l cannot be confined.
We want to verify here this general property with some ex-
amples. We can choose in Eq. (19) a superposition of solu-
tions g ;,(u ;;t) of type Eq. (23a) or (25a), restricted by the
fact that as a function of (u,;u,), |[F 3(u;u,)| depends upon
only u, 4 &u,. In this way we consider for instance two fam-
ilies of kernels,

Fi= S a, expln,, (u+&u)+im? (@ +&a) ]
Ren, <0 @7
Fl= 1 p;_<_ll_% _u_g;)i a,
d—t i1—d \da,  4a) =,
c
X exp[d:; [ui+Eu,+iC,, (a,+Ea) ]] (28)

C,..d arereal, C, /(d—t) <0.

In Eq. (27) both the phase and the modulus depend
upon only u,+£u,. Followmg the result of Appendix A
(quoted in II B 6), Kl , depends upon only X —+—§x2 and from
the structures of both Egs. (26) and (27), K! ,isin fact a
function of the variable exp[const.(x, + £x,)] which remains
constant in the asymptotic directions x, + £x, =constant.

In Eq. (28), only | F }| depends upon u, 161 In Appen-
dix B, for N=2, we explicitly show that [K 2l depends upon
only one varlable exp[const.(x, +£x,)], and consequently in
the x,x, plane |K ;| cannot be confined.

V. CONCLUSION

In this paper, for two different cases, we have studied
the confinement properties of the solutions of the nonlinear
Schrodinger equation, in a two-dimensional space (x,,x,):

(i) If the nonlinear part is reduced to a purely cubic term
(as in the one-dimensional case), we show that the modulus
of the solution depends in fact upon one coordinate x, + &x,.
Consequently the solutions cannot be confined in the x,x,
plane.

(ii) If the nonlinear part is not reduced to the usual
cubic term, but is like the extensions previously found by
Ablowitz, Haberman,' and Morris,* then there exists an infi-
nite number of confined solutions at any finite time.

Although we have focused here our attention on the
existence and confinement properties of the solutions, there
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remain of course other problems: a possible extension in a
three-dimensional space, the existence (or not) of conserva-
tion laws... .

There exist classical nonlinear evolution equations for
which we know that the extension to more than one spatial
dimension should lead to difficulties concerning the exis-
tence of the solutions. The nonlinear Schrodinger example
may provide a possible escape from these difficulties. The
way being not only in the trivial changes of the linear part
(where derivatives with respect to one coordinate must be
replaced by the corresponding ones with many coordinates)
but also in the modification of the nonlinear part. The fact
that for this example, the same extension has been obtained
by three different methods indicates that this extension cer-
tainly has a deep meaning. Perhaps an approach’ like the
“prolongation structure” is convenient to understand the
modifications to be introduced going in higher dimensions.

In the inversionlike formalism these extensions are very
natural because they introduce into the resulting nonlinear
evolution equations, the solutions of the IE which are not
directly linked to the potentials, For instance ina 2 X2 IE,
the K functions are introduced in supplement to the
K! (zqﬁj) which are the potentials of the associated partial
dlfferentxal systems. These inversionlike integral equations
appear as a powerful tool for the study of higher dimensional
nlpde and it remains now to study the extensions of the other
classical nlpde.
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APPENDIX A

AN
1. Firstly we investigate the properties for X, due to
the assumption

Fi(uv)=1 [F(ou) 1*,
We iterate Eq. (11) and get:

S | drye f dr,,J dvl---J dv,
n=1+x, x, X ; X

7 real. (AD
sz :Fj,:(xi’-xj) + z

XF;(rlaxj)Fj,"(Uhrl) {IIF]’:(ri’Ui‘»l)}F‘{‘(U,')ri)]
2

XFHX,0,), (A2)

Z alvo jdv J<dr1 jdr Fi(vox))

<[[IFiC 0 D Fiw o) [Fie 0,0, 89

wherein (A3) IT ] reduces to 1 for n =0. Taking into account
(A1) we get:

L2t 1
7K =F 5(x1,x,)
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+ 5 [ane| ar, [ dven | v, Fixry Fie)
n=1Jx, X\ X, X

X [ﬁFé(Uifl’ri)F%(ri’vi) ]Fé( U, X2) (A4)
)

=y dUo"‘f dv"f dr,...f dr ,Fi(x ;,r)
n=0Jx, X, X, X,

X[IIF/’(UI l’ri)Fj/:(ri’Ui) ]F;(Unrxj)'
1

(A5)
If in (A4) weexchanger v, , then therhs of (A4)is just

K Ifin (AS) we exchange PSS, i1 UiV, then the
rhs of (A5) is just K'

So K ¢ is real and consequently if we define | F 2u,v)
=£(u,v), (A3) can be rewritten

Ki= Sy f dvo-uJ dunJ drl.--f dr .f(Vex ;)

X[;]f(vi—l’rf)f(vi’ri) l[(vi1’xj)' (A6)
1

2. In addition to (A1) we assume

ad ad ) 1

—_— K ,=0. A7
(8)61 ; aX2 ! ( )
From

N AT
577” axl 8x2 70

we see that (A7) must be true at each order in 77. At the first
order, we must have

(&t )| Fusno,

—fHx,x)=E, f dvoaxqu(vo,xz) . (A8)

If we differentiate both sides of (A 8) with respect to x, we get

Y 2 = \ ) 9
(ax, c xz)/(xl,x2)=0,f(u,v) FCutv). (A9

Taking into account (A9) into (A6), K * can be
rewritten

K\=%7n f dv(,---J. dv f dr,---f dr f(Evs+x,)

X(i?f(glvi-f—l_*—ri)f(glvf+ri))[(§1v . tX2),

(A10)
Ki=S7 fdvo fdu fdr, fdr S ot Eix)
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X(I?f@ﬂ'f+Ui~1)f(§lri+vi))/(vn +41x1) -

(Al1)
If in (A10) we define v, +x,=W , r,+{x;= R, in
(AlD) {x+v, =W, §ir; +x,=R ; and in both cases
x=x,+x,{, we get

§,1/(\} :1?%
=S ¢, f dwodw , dR f dR f ) 6v,)

XOfw,_+R,—x)f(w,+R;—x). (A12)
1

From (A12) it is clear that both K ! and K 2 are functions of

one variable x,+x,£,. Further (8/dx, —£,8/3x,)K 3=0 with

&6 =1. Asaconsequence, if fin (A9) is purely degenerate, it

must be the product of two purely exponential functions.

3. We shall get the same property as in 2 for the particu-
lar solution written down in (15a) and (15b). We require
(_‘9_~ ¢ i_i_) £i=0

dx;
and define in Eq. (15) |g,(x ) =g(x)), jg.(x:)f =4 (x,). We get
from Eq. (15)

(A13)

i

2
gC +C, fg+C3 (Jg) =0, (Al4a)
gCi+C. g, +C,s [gx‘Jrg+g2] =0, (A14b)
C|:h, Cz:glhx;’ C]: —glh [hxth—i'hz],
(Al4c)

C.=& fh, Cy=—nt, (fh )2,

where C,320, C,20, C,2Z0, C,=£0, C, can be zero.
We take the derivation of (A 14a) with respect to x,, get

With (A19), Eq. (3) can be rewritten

— + o< ]
l%/(xn,xz;V)=t9“1(x1,xz;y)+J‘ T O, x S 0)K (x1,x5;5)ds,

.7@( 0 F;<x1+§(y—xl+xz)))
WF;*(J’“xﬁ‘xl‘f‘é’XZ) 0 ’

0
#
”(le(y“xz‘f‘xl +&(s—x,+x,)%60 s—x)

Cyg, =gC,+2Cgfg and substitute in (A14b),

C%+[C4+C5 fg][cz+2ca fg]‘*‘gCle: 0.
(A15)

We multiply (A14a) by C, and subtract it from (A 15),
2
[CI4+C.C, 1 42CC, fg+C3C5 (fg) =0. (Al6)

Thus f7g(u)du is the solution of a second order algebraic
equation with coefficients independent of x,. This is impossi-
ble unless all the coefficients are zero, C 3+ C,C,=0 or
h+£.6:h, fh=0and C;=0. Or

L hx:fwh(u)du=o. (A17)

Finally £,{,= + 1 and the A, solution of (A 17) is necessarily a
pure exponential type function.

Let us remark that (A 14) can also be written

hD1+hX2D.,+D5<h J h+h? ):o, (Al4a)

2
hD] +szh +D3 (fh > :0,

D =g D,=(g,, Ds=—§m[gx,fg+g2},

(A14b)

D=8, |8 Ds=—n5h).

D\, D,,D,, and D; are not equal to zero whereas D, can vanish.
Doing the same analysis as before, we get £,{,=1 and
g +gx,fg= 0, (A18)

which says that g also is a pure exponential function.

4. We assume
Fiu;v)=n(Fvu)*, Fup)=F(u+£&v) (A19)

and want to show I/(\j’ =I/(\]’ (x,+Ex)) .

Fys—x+x+E(p—x1+x,))0 (s—x,)

: )

We define Kj‘f(xl,xz;yzx[—kz): G}’-'(z), x=x,+£x, and from (A21) we get

(i )=l
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Filx+82\ (=
N(F (x+2))* 0 )+J:) u(ﬂFi*(z-Fx +8u) 0

Fé(s‘z+x+u)>x(6 i(w) G;(u))'

1
Gi(u) Giu) (Azh
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From (A21) it is clear that G (z) depends upon two varia-
blesx and z. FurthermoreK =G (z 0) and it follows that
K depends only upon x.

APPENDIX B

1. We want to find the general solution of the heat equa-
tion (for imaginary time),

(i—a——+a -(?-Z——)F(u,t)=0 a real, (B1)

ot ou’
when |F] is a purely exponential function of u. We define
F=|F (u,t Yexpid (u,t ), [F|=g(t) exp(un(t )) and we get from
(B

Sy 40 +26,7=0, (B2)
ag
ﬂ'—*ﬂ —(d.) (B3)
From (B2) we get
Do) e
b= pe = exp(—2nu) 4m7u
u 7. n (IOgg)t Dx(t) B4
+<4772 2n)+a’ @9

where D, and D, are arbitrary functions. However due to
(B3) we have D,=0. We get two cases following 17,=0 or

7,720.
(i) 7,20, we get
F=expd (u+idat),
(ii) 7,2£0. From (B3)-(B4) we get

d=complex constant. (BS)

—(zl (_8_10 )2 or 7= £
ar B\ g OFT Y

where ¢ and d are arbitrary constants. Further we get

S(logg) , —(logg) (logn) , +4[(logn) ,]*=Oor
g=(d,—1) " and finally D, =a’c*/(d—1),

2
F=(d— t)‘“zexp——l——[cu +i(——l£~+ac2)]. (B6)
d—t 4a

2. We consider the solutions Eq. (26) corresponding to
the kernels Eq. /(28) for N=2.11s ﬁxed we study the x,,x,
dependence of K } and show that IK 3l depends only upon a
function of expy,,(x, +£x,) where the y,, are real. In Eq. (26)
we have
a, 1

= (.4
g 1) Td—1 p

u?_
X(Cm(u1+iCmal)—iEl—), (B7)

1
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gz,m(UZ):d_t 7—:

X(Cm§(u2+iCm§a2)—i£a—§).

2

Let us call H the space of functions constant.
expy,(x, +&x,); if heH, h,cH, then h h,cH. From Egs. (26)
and (B7) we get the rules (let us call Hthe space of functions
2 const. ;h; with h el ):

(i)(’wrlnlc;anEH Cl CEnIEH’
(II)C in/ C §r71 C 1" ijm ’ l#]’
(ii1) [ g 1 (X1) & 2 (R)EH

(IV) Bzm(xl)glp(xl)lc mgq pqEH m#P (BS)

Kin Eq. (26) can be written N/D where D is the
Fredhold determinant,

D=1-9 z CHCH+CHC L+ z CI\ICIZECQC]]’
it 1Ak, (B9)

From (i) and (ii) we get DeH and from (iii)
Diz g 2m (xl) g 1m (xl)leH - NIS

N= DI/('\;—:DZgzm(xz)g 1m (1)

+772 Zglm(xl)glp(xl)Bm,p’ (BIO)
m p
where the B, can be constructed from the C/, ;. Due to the

mp
fact that the u; dependence of the phase ing ; ,,(u ;) [given

by (B7)] is independent of m, the dependence in x,x, of the
phase in both the two terms at the rhs of (B10) is the same
and can be factorized out. Now

B, Cln 1Cfn,1[1“772C}2C?2]
+Cm chn 2[1—1’2 C111C122:|

77[ 2C1 Crznl

Cm 2C m,2
2

+3 c,hc}zcjﬁc,é], i,
i=1

and applying rules (i) and (ii) we get that B ,,, €H . Form+#p
we get for the second term on the rhs of (B10)
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i i), (3i), hat the modulus
(x xylcl c? {1 _ cLc? ] such that applying rules (1))\, (1121(1v) weseet
78 2m (X2)8 1, ‘){ e 7’2 e belongs to H. Finally | D K JeH .
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Independence of the free energy for one-dimensional
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In this paper we prove the independence of the free energy of a one-dimensional system of fermions in a
box from the boundary conditions by using the Wiener integral techniques.

INTRODUCTION

It 1s known that the methods of functional integration
have been introduced in statistical mechanics by Ginibre' to
study the correlation functions and the pressure of quantum
systems of particles. By making use of these methods Novi-
kov? has proved the independence of the free energy from the
boundary conditions for systems of particles obeying Max-
well-Boltzmann or Bose—~Einstein statistics, when the inter-
action is either hard core either positive and the boundary
conditions are of the type

Ju |
onlaa

where d/dn denotes the inward normal derivative.’ Similar
results have been obtained by Gallavotti and Lupini.* In Ref.
4 a diffusion process with absorbing boundary was used to
treat the cases 0 < k < -+ o (see also Ref. 7). The case k <0
corresponds, as is shown in Ref. 8, to a process with creation
of particles on the boundary.

=ku, 0<k<+ o,

The independence of the free energy from conditions
for a one-dimensional system of interacting fermions is prov-
en in our work for — o < k< + oo, without the assumption
of hard core. In this case the effect of boundary conditions is
weakened in the process because of the condition of the par-
ticles of not touching one another. An interesting problem is
to examine the dependence of the free energy for a one-di-
mensional system of interacting bosons with k <0 (see Ref.
5).

Another approach to the problem of the independence
of the free energy from the boundary conditions is due to
Robinson.* He studies the Hamiltonians for different bound-
ary conditions by looking at the corresponding quadratic
forms; however it does not seem that in this way it is possible
to treat the general interactions to which the method of func-
tional integration applies.

1. DEFINITIONS AND CONDITIONS

We consider a system of & particles obeying Fermi—
Dirac statistics, enclosed in a one-dimensional box A~ The
Hamiltonian of the system is formally defined by

210 J. Math. Phys. 20(1), January 1979

0022-2488/79/010210-06%$01.00

n dZ
H”——-_%'Z dx2 +z¢(‘xl—x1[)
je= i i<j
A s ) (1.1
=1 —+ Uy (X1 X y), D
2,‘; dx? " )

i.e., we assume that the particles interact through a pair po-
tential depending only on the distance. We require that the
function @ only satisfy the following conditions:

(1) &(r) is continuous for every r> 0,
(ii) @(r) > —C, ¥ r, where C is some positive constant,

(i) | D(r) | <(r't)" forr>a', where € and a’ are
some positive constant,

(iv) @isstable, thatis > P ({x;—x,|)>~-BN, Y

Tod<ja iV
N, ¥ (xy,...x,), where B> 0 is a]constant.

The proof also applies if the potential is hard core, i.e.,
forsomea >0, P (r)= + oo, for0<r<a. Inthis case, howev-
er, the proof is easier. We will define the operator H
through the Wiener integral technique. We first define an
operator T, in L(A™) which is a self-adjoint extension of the
operator 7", whose domain is C;(A V), i.e., the space of
the functions #(x) twice differentiable with continuity until
the boundary 34"

kv ((x™)) —gi((xN))=0, — o0 <k< 4+ o,
n
(xMedA M\ rv, (1.2)

where I'™ is the set of the “corners” of the boundary aaN
that is the set of the intersections of more than one

(N — 1) —dimensional face of oaN , and d/dn denotes the

inward normal derivative. If k= + o, the condition (1.2)
means Y{((x"))=0.

The operator T'%, can be defined as the product

N times
TY & T

where each of the operators 74 is defined through the Wie-
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ner integral technique (see Appendix A and for details see

Refs. 7 and 8). In the case k <0 the operatore ~‘7
therefore be written in the following,

I\,
Y can

le "oy l(x™)

=E{ V] Y W), ) (1.3)
el
i\ e.l N
where £ fx +, denotes the expectation with respect to N inde-
pendent diffusion processes with creation on the boundary
with initial points x,,X,,...,x », respectively, and J ! is the set
of the indices of the particles of the / th process which are
present at the instant ¢.
In the case of Fermi-Dirac statistics the domain of the

operator e “PH. s restricted to the antisymmetrical func-

tions on which the scalar product

(l/f«/}):—]——f W x)@ (x)dx s defined.
N! Jan

In this case we can note the following. It follows from the
well known properties of the Brownian motion that if two
particles belonging to different processes hit each other, the
successive part of their paths can be exchanged without
changing the probability of the process.

Since the function #(x) in (1.3) is antisymmetrical, the
exchanged paths give the integral in (1.3) contributions
equal in modulus with the sign of the corresponding permu-
tation; it is easy to see that after all the cancellations, only
those indices i},...,{ , must be considered in the sum of (1.3)
whose paths have never touched each other (where the path
Z),‘ corresponding to the index i, is the path that starts from
the ancestor of the particle /, at the instant r=0 and follows
the genealogical line that leads to the particle i).

If we define the function

(@) =a(@,..., By)

ij>0,0; (5)7&51‘ ),

[1 if ¥ se[0,t1], V ij<N,

0 otherwise,

the expression (1.3) with antisymmetrical ¢ can be written in
the form

e Tlix™)
£l 3@, 3, (Va0 3 | am

ied)

Qed )

We can now define the operator e PURTUY through the

usual construction which is motivated by Trotter’s formula
(see Ref. 3) in the following way,
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[efﬁ(Tkﬁv U«-)w}(xN)

de(x Mia® )Z [I/I@i.(ﬁ)""’ al\(ﬁ))]

B ;
Xa(&i,,...,a_);‘\)exp[~J< UN((F“(S))ds] (1.4)
0

where @" = (@,....®, ) and the integral is computed with
respect to the measure P *. which is the measure associated
with the process previously defined, with starting points
(xV=x1,....xy). Take as ¥((x")) the indicator of a set of 17,

W) = ﬁx,,l(x,-), where 4,CA. (1.5)
i=1
From (1.4) it follows that
[e"’/}(rl‘\ﬁ'U\)l/]](xN)
<[TLE SO e e e (16)

where £ X(N i(4,)) is the expectation value of the number of
the descendants of ith particle that at the instant ¢ lies in the
set A; since £ f{,’(N {4)))=0if the Lebesque measure of the set
A, is equal to zero, by the Radon Nikodim theorem the inte-
gral in (1.4) can be written in the form

f K" 0)M0) )y, (17)

where K ((x)", (»)V) is a suitable density function with re-
spect to the Lebesque measure. By virtue of the uniqueness
of the conditional probability, up to null measure sets, we get

K", 0"
JP‘X LR )(da))a(w Yexpl — U(@)]

where P(y),u‘) is the probability measure of our process
with the condition that a descendant of the particle placed in
x, at the instant =0 occurs in y; at the instant =4,
{=1,2,..,Nand V= (®,,...,@y) are the corresponding lines
of descendence. So we can conclude

Tre 7~
~ ] KEO e der

Al”jp b (d0)a@™) expl — U @))dx™.

2. INDEPENDENCE FROM THE BOUNDARY
CONDITIONS

The free energy of the system corresponding to the
boundary conditions

W

on lan

is defined in this way,
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k
ffeB)= Ml?m _é l%z_%"/‘*ﬂ) Q.1
N/ |A l'w’P

where Z (N,A,3) is the partition function of the canonical
ensemble

Z*=Tre % 2.2)

[the minus sign shows that the operator in (2.2) is restricted
to skew functions].

Now we want to prove the following theorem:

Theorem 1: If the limit (2.1) with k= « exists and the
potential function satisfies conditions (i)-(iv), then for every
k, — oo <k < + oo, the limit (2.1) exists and

fXpB)=f1(pB) (2.3)
that is the limit is independent on and is equal to the null
boundary conditions limit.

Before the proof we want to exhibit a bound for Tr
e T It is true that

Tre“ﬂTf. - 2 e\ﬁ/l,
where 4, are the eigenvalues of T'§ . It is well known that for
k <0 there are at most two negative eigenvalues which tend
to —k 2 whereas the positive ones satisfy the chain of
inequalities

(l—:‘TT>2 < (l_ifr—ly <Al

Finally
& N o 2
Tre FThg2e® 4 o 4 $ exp[ _B(_lriﬂ_l) ]
n=1
<2 e + Al
T

xf e P dx<|A |,
0

where Q is some constant (see Ref. 5).

We go on now with the proof of the theorem. First, only
the geneaological lines [see last side of (1.9)] which move
from the minimum or end maximum of the x, can hit the
boundary because the factor of antisymmetry annihilates the
crossing genealogical lines. We know that a trajectory of a
process with creation can branch as a consequence of the
definition (see Ref. 8) only when it hits the boundary of A: In
this case it is possible not to consider the branching of those
trajectories which come from intermediate (not extremal)
points because they do not give a contribution to the integral.
Now we can majorize (1.9) in the following way: Remove the'
interdiction of crossing to the genealogical lines correspond-
ing to extrema of (x,). (This is a majorization because the set
of trajectories which form the integration set, is widened.)

Now taking account of the previous observation, we
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can majorize (1.9) in the following way: We remove for the
trajectories descending from the two extremal points the
condition of not intersecting and minorize their interaction
with the other particles. In this way we get majorization of
(1.9) in which the contribution of extremal trajectories is
factorized whereas the contribution of the remaining trajec-
tories can be evaluated by means of the measure P 7, (that is
the conditional Wiener measure with absorption on the
boundary). We therefore obtain

1

N1 L \Pé‘xx)‘(y\)a((T))exp[ —Uy@)d (x™)

- f PE . \(d a(@)
Xy <Xy < oee

\

X expl — Uy@)1d (")

2 l
k C "
<(foxdx> ¢ (N=2)! L\ P& e v d

B
Xexp[——j [Uy_2 (0™ 2]
o

+2W (G ))de ]de-2, (2.4)

where we set W(xl,...,xNﬁz)zinfs[E,-cD (x;—s)] to

minorize the interaction of the internal particles with
the extremal ones. Using the initial remark, (2.4) can
be majorized by

1 . By
(N—z)!L N 3P(X\ 1),(x\' 1)(dC()N )

A
X exp [—j {Uy_Jo™ %)
0

|A[*Q?

+2W (@™ )}t ] =a, (" )d()¥2  (2.5)

Our goal is to show that the contribution of the term
W @™~ *(t)) tothefree energy becomes negligiblein the limit
|A]->. Given a constant d > 0, we divide A into intervals
Ao A A a4 oflength d, with the exception of the last
one, whose length is |A| —d [|A|/d ] and define the se-
quence {ay} as ay=[N /log log N].

We divide the set AV % into two subsets X, and K,. If
xeA V2 and 4, is one of the intervals, we denote by p(x,4,)
the number of the components x, of x such that x€4, and
define

K,E{xe/i’v‘2 s.t. for i:1,...,[l%l]+l,p(x,Ai)<aN],

K,=A N I\K..

We evaluate the Lebesgue’s measure of K,. This mea-
sure is equal to the probability that a point x, with uniform
distribution in A ¥~ 2 belongs to K, times | A |N~2 This
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probability is less than a constant times the probability of the
same event computed from a Poisson process distribution in
the interval A, with the mean A > C(N—2), where Cisa
constant C> 1."* Given a A, we have

P{p(x.4;>ay}

S e
\k;,\ WN/pd) k1 P\2N/pd

<L 2cpa)* =260 2.6)
ay!

and therefore

N/loglog N
meaus<_AL C'(de) e/delA [N—Z.

2.
pd [(N /loglog N)]! @7)

For what concerns the trajectories with initial and final
points in K, we divide the space 2 of the N tuples of trajec-
tories, not intersecting each other with initial and final
points in K, into two subsets (2, and £2,. If {5, } is the se-
quence {8y }={[N /log log log N 1},

2,={we/¥e[08], for i=1,.,[|A|/d]+]1,

plo(t )A4)<By}, 2. =0\,

We want to majorize P (°°)(.(22) uniformly for xeK,. The
event {2, can be written as

1A l+1
,= v E,

i=1

where E,={wef2| 3t€[0,8 ],p@(t ), A) > By}

We majorize P {%’(E); for the sake of simplicity we take
{=1 without losing generallty Because of the condition of
not intersecting, the event E| is equivalent to the event that
the trajectories starting from the first 3, points reach 4, for
some £€[0,8 ]. So we consider the probability of the last event.
We majorize this probability in the following way:

(a) we remove the condition of not intersecting and re-
maining in A for t€[0,4];

(b) the particles can reach 4,, each one at a different
instant and are not requested to be together in 4;

(c) the starting points of the 3, trajectories are located
in the nearest position to 4, with the condition that xek,,
that is, there are a, starting points at each of the left end
points of the first [3,/a ] intervals;

(d) we majorize the probability of reaching 4, for trajec-
tories starting from 4,,4,,..., 45 ,, with that for a free (not
conditioned) Brownian motion, which is surely correct for d
big enough.

We obtain in this way
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PE(E)

\[ﬁ\,/ﬁ]z[ \/f)' ﬁ(,d)wﬂ] ’
j=1 \/277_]7/
2
<exp[_ M)_] v xeki, 2.8)
(log log log N )’

where ¥ is a suitable constant, and we use the distribution of
the minimum of a free Brownian motion and the usual esti-
mate for the tail of the normal distribution. Therefore,

P12y)
{14 |/d]1
< P(E)
i=1
2
<CXP{— _N(oglog N) + log (ﬂ)] (2.9)
(log log log N ) pd

Now the integral of the formula (2.5) can be estimated in the
following way

24) 2,8C
2.5)<|A]*Q%" (N o

( K‘d(x" 2)j dP = (™3

3 -
Xexp[_ f [U(a)“"“z(t)+2W(m‘”‘"z(t)))]df]
0

+Ld(x‘”"2)an+Lvde2J;2).

Since in the first term of the sum o™~ 2is in £2,, W(w" ~4(¢))
is minorated by KN/log log log N Y 1€[0,3], where K is a

suitable constant. Using (2.7) and (2.9) we obtain

2.10

eBKN/lOg log log N

2.10)< | A |? sz')

X f dx" J' dP = ("2
A 2 12
2Nv-2NN72

3
Xexp[—f U(a)N’z(t))dt]+—————-
N pN-~2

(log logN )?
(logloglog N )’

e (2]

2)& C:(de)(N/loglogN)
pd [N/loglogN ]!

e ()
P

Xexp[—Ny

+ e/)‘E(N-

2.11)

M. Campanino and G. Del Grosso 213



The trace of exp(—/SH ¥ __,) appears in the first term of the
sum. Therefore,

1 logZ*(A,B,N)

lim sup —
(A~ B |4 ]
N/A p
<lim sup . 1082 “@BN) 2.12)
Al—w B |1
N/[A Y- p

since the other terms do not contribute to the lim sup. On the
other hand, the integral for the process with creation (k < 0)
is made over a bigger set of trajectories than for the process
with absorption, whereas the proabability measure is equal
in the common part of the two sets. Therefore, we have

1 log Z*(A,B,N)

lim inf —
Al e B |4 ]
N/|A |—p
> lim inf 1084 “ABN) 2.13)
1Al o [4
N/|A |-op

And the inequalities (2.12) and (2.13) imply the theorem.

APPENDIX

We call v-dimensional Brownian motion with initial
point x a stochastic process

Borel subjects of R” and 0 < t, < t, < < ¢,
P(x,€B,x €B),..x, €B )

| L TS e A

X(x,—x,_Jdxdx,, (A1)
where
_ 1 _LdxE
b= expl —- LX), a2)

It is known (see, for example, Ref. 11) that there are realiza-
tions of the Brownian motions [i.e.,.#measurable maps from
a suitable probability space ({2, #, P) into the paths in R”
such that (A1) is verified] such that the trajectory is continu-
ous with proability 1. Pis called Wiener measure.

We note that the function (A2) is the Green’s function
of the heat equation defined on the whole space R";

du 14y (A3)

a2
Therefore, the solution of the heat equation with initial con-
dition u(0,x)=f(x), xeR" can be expressed in terms of a
Brownian motion in the form

u(tx)=E , [f(o@) ], (A4)

where E, denotes the expectation (A2) with respect to the
Wiener measure with initial point x, and w is the sample
path.
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In other words, the operator L

through the Wiener integral.

can be expressed

If we consider the heat equation on a bounded region D,
the solution depends on the boundary conditions that we
impose. From the point of view of the Wiener integral, this
leads us to consider processes whose behavior is different
from that of the free Brownian motion only at the instants
when the trajectories touch the boundary of D. Let us exam-
ine the case of the paper, whose study has been carried out in
detail and in greater generality in Ref. 8, that is, the bound-
ary conditions with k < 0, and d/dn denotes the inward nor
mal derivative. For this paper is is sufficient to consider the
case when D is an interval. In this case it is easy to define the
reflected Brownian motion. If xeD we define the map
p:R—D,

pX)=x—2nL if 2n—-3L<x<@n+3)L ,
PO)=@n+DL—x if (2n+%)L<x<(2n+%)L_

If w(t ) is a continuous trajectory w:[0, o ]—R plw(t)) is a
continuous trajectory in D and the process

ﬂ—»p(a)(t »
is called reflected Brownian motion.

The reflected Brownian motion corresponds to the
boundary condition du/dn =0 in the end points of the
interval.

In order to obtain the process corresponding to the
boundary condition du/dn=ku with k <0 it is natural to
think that for this process not only the trajectories must be
reflected by the boundary but new particles must be created.
The creation of particles must depend on the time spent by
the first particle in the points of the boundary. A measure of
this time is given by the local time.

If a is one of the end points of D we say that 7, (w,?) is
the local time that the trajectory « has spent in g until the
instant ¢ if

t_‘,(w,t):limzimeas{s|0<s<t, |w(s)—a| <€}
e »0 L€

where the measure appearing in the definition is the usual
Lebesque measure.

There are realizations of the Brownian motion for
which the limit in (A5) exists with probability 1 (see Ref. 12).

We can now construct the stochastic process corre-
sponding to the boundary conditions du/dn = ku with k <0.
We give the initial trajectory the diadical index 4 and associ-
atetoit the local time #,,(w, ,,,¢ ) spent on the boundary of D,
defined as the sum of the local times spent in the end points
until the instant z. By enlarging the probability space we
define a random variable m, ,, distributed according to the
law

P(m >t/ F =exp[k 3p(@ 1 0t)],

where ., is the g-algebra generated by the events
{w(s)ea }, O<s<t.

It is easy to see that with probability 1, @, ,(m, ,)edD, since
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the local time increases only when the particle touches one of
the two end points of D. At the instant m , , the initial parti-
cle dies and is replaced by two particles that start their mo-
tion from the point w, ,(m, ,,), we give them the indices
and 3 and define two random variables m,,, and m,,, in a
larger probability space, with distribution as in (A6), at the
instants m,,, and m,,, the particles split in two, and so on.

The solution of the Eq. (3) with boundary conditions
(@u/dn)| 3p=ku, k<0 and initial condition
u(0,x)=f(x) can then be written as

u(x,t):Ex[Zf(w,(t ))}

ieJ,

where the expectation is taken with respect to the process
that we have described, and J, is the set of the indices of the
particles present at the instant ¢.

So we have constructed the operator e** where 4 is the
self-adjoint extension of the operator d*/dx* defined on the
functions C*(D ) which verifies

du
—| =ku.
dx lap
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Addendum: On the inverse problem of transport theory

with azimuthal dependence
|J. Math. Phys. 19, 994 (1978)]

N. J. McCormick and J. A. R. Veeder

Department of Nuclear Engineering, University of Washington, Seattle, Washington 98195

(Received 7 July 1978)

A simplified expression is given for the moments over all space and angle of the intensity arising from an
azimuthally-dependent plane source in an infinite medium. This provides a convenient equation for
evaluating the mean of even powers of distance of travel of particles.

For a plane spurce in an infinite medium, the radia-
tion intensity I(, i, ¢) depends only upon the spatial
coordinate 7, the cosine of the polar angle, u, and the
azimuthal angle ¢. Moments of this distribution K7 for
non-negative integers /, m, n may be defined as

Kr =] " dre [ dgcosmo [ duPr(n)i(r, 1, ),
(1)

where P’l”(p) is the associated Legendre polynomial,
Symmetry considerations reveal that K7 =0 for
(n+1+m) odd and for n< (I - m).

The moments of Eq. (1) also may be expressed in
terms of the Fourier expansion coefficients [™(7, 1) as
Km =27 j_: drm™ ji d;n(u)p'ln(u)l"‘(r, By, (2)

len
where the notation is that of Ref. 1. The moments are
a function only of 1, the cosine of the polar angle of
the source radiation, and the parameters

hy=21+1-,. (3)

The w,, 1 <I<WN, are the Legendre expansion coeffi-
cients describing the anisotropy of scattering of the
medium, while for the isotropic term @,<1 since some
absorption is assumed. The assumption of finite scat-
tering order N leads to an additional condition that

K7 =0 for m> N,

The general result for the K7, derived in Ref. 1 can
be simplified by generalizing a result of Cacuci and
Goldstein, 2 who provided an elegant expression for Kgm
as a part of their investigation of neutrons slowing down
in an infinite medium of constant cross section. The
general result is

7-m jg+l Jj1+1

2! .
Km _Km n! Z\ wj E lUj Z} ?l:j “ e

7l
Lin p-m (L —m)! dgto  YoiTTo 1o 2

! (tnem-1-4y /21"
X2 w, ,

S _ Hnsm-1-2)/2
(n+m=-1-2)/2
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where the w’s depend upon m and are defined as

wy=+D@m+j+1)/(h; ;). (5)
The values of K7, in the right-hand side of Eq. (4) are
given by

Km Km l 3 1 Y ! em 1 l

r =K (I=m)! (I+m)! i et >m, (6)
where

K o=(1-p)™2@m+ 1)1 /h . (7)

Equation (4) eliminates the need for evaluating a deter-
minant, as in Ref. 1, to obtain K7 .

The use of Eq. (4) leads to a general equation for the
mean of even powers of the distance of travel of parti-
cles in the mth azimuthal mode, which is defined by

<Tzn>m:K$,2m/K$,o' (8)
The result is )
o jobl }ld
M =(2n)! w, W, Py oW, -
= )jgg 1020 Wy, i W,
I (n-2*1
w; 9)

- i
i (p=1)=0 n-1)

The nested sum in the right-hand side of Eq. (9) is
identical in form to ratios of the “‘eigenvalue space”
moments calculated by Cacuci and Goldstein, except
that the w’s are now defined for any m. Explicit ex-
pressions for this sum for # = 18 are avajlable.?

IN,J. McCormick and J. A, R, Veeder, J. Math, Phys, 18,
994 (1978).

D, G, Cacuei and H, Goldstein, J, Math, Phys, 18, 2436
(1977),
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ERRATA

Erratum: On the positivity of energy in general relativity
[J. Math. Phys. 19, 1152 (1978)]

Pong Soo Jang

Department of Physics, Syracuse University, Syracuse, New York 13210
(Received 24 July 1978)

Equation (25) should read, + 5 (707, ~ $T°) + 3, + ﬁa(a-‘m)]di
d—fi-(tt—) = - f%Da [(_7?+ 1))2;“][1;}_ + f[z;abﬁadqacqbd - (ﬁabqab)Z - %UZ - 25-17\48055
~ o - +237%5,80°01dA > - f()+ [[P®Fquctra ~ BP¥qu)
=3} [3F + )20 - @+0)*]dA B
TAan F 4 9 F-2% FT5aF
+2 [+ o) = KD g0) + 7%, - 57 - 20! = 2071 T, + 24710, 637¢ JaA.
+3,1°+ ¢71595,6 - ¢ 773,844 Equation (30) should read,
+ [BF + )PP 0lse — F%4) - 307 JdA. S uettva ~ BPqe) = 307 — 2071T°0,6 + 2623,85°6 | dA
Equation (27) should read, = [[8°6,(3 - K- D,wD,,wq™) + (r*y 4 ~ %9
E’{i_iﬂ == 3r)+2 [[(u - KV 27D w) +3(T° = 2671590 (T* - 26595)7,, + 3K ta’ldA > 0.
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